Brief Presentations Proceedings

(RTAS 2019)

Montreal, Canada
April 16, 2019

Message from the Chair

Welcome to the Brief Presentations Track of the 25" IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (BP-RTAS’19) held in Montreal, Canada. BP-RTAS’ 19 provides
researchers with an opportunity to discuss their ideas, present ongoing work, gather feedback from
experts and demonstrate their work with concrete systems, tools and prototypes in all areas of
real-time embedded technology and applications as part of the CPS-IoT Week joint poster/demo
session.

This year, BP-RTAS’ 19 accepted eleven presentations; seven work-in-progress papers and four
tool and systems demos. Each submission has received three to four reviews. The accepted presen-
tations cover various research topics in real-time systems such as real-time scheduling, real-time
networks, autonomous and intelligent systems, [oT, GPU resource management, etc.

We would like to take this opportunity to express our gratitude to the members of the Program
Committee for thoroughly reviewing all the submitted papers. We would also like to thank all the
authors who submitted their work to BP-RTAS’ 19 and hence contributed to its success.

Organizing this track would not have been possible without the help of many people. First, we
would like to thank Bjorn Brandenburg, the Technical Chair of the RTAS 19 conference for his
guidance and support. We would also like to thank the General Chairs of the CPS-IoT Week, Rasit
Eskicioglu and Xue (Steve) Liu, for their help in ensuring that everything goes well and smoothly.

On behalf of the Program Committee, we wish you a pleasant experience at the CPS-IoT Week.
May the environment be stimulating and furthering fruitful discussions, and the presentations be

enjoyable and entertaining.

Mitra Nasri
Delft University of Technology (TU Delft)
Brief Presentation Track Chair

Program Committee

Antoine Bertout
Arpan Gujarati
Catherine E. Nemitz
Chang-Gun Lee
Daniel Casini
Daniel Lohmann
David Pereira
Emmanuel Grolleau
Florian Polzlbauer
Jing Li

Kecheng Yang
Leonie Kohler
Matthias Becker
Mohamed Hassan
Olaf Spinczyk
Zhishan Guo

Inria de Paris, France

MPI-SWS, Germany

UNC, USA

Seoul National University, Republic of Korea
Scuola Superiore Sant’ Anna, Italy
Leibniz Universitit Hannover, Germany
CISTER, ISEP, Portugal

LIAS, ISAE-ENSMA, France

Virtual Vehicle, Austria

New Jersey Institute of Technology, USA
Texas State University, USA

TU Braunschweig, Germany

KTH, Stockholm, Sweden

University of Guelph, Canada

Osnabriick University, Germany
University of Central Florida, USA

v

Table of Contents

Message from the Chair. e 1

Experience Report: Lightweight Implementation of a Controller Area Network to Ethernet
GalBWAY . . oottt 1
Florian Polzlbauer and Allan Tengg

Time-Aware Deep Intelligence on Batteryless Platforms................. 5

Bashima Islam, Seulki Lee, and Shahriar Nirjon

SpotON: Just-in-Time Active Event Detection on Energy Autonomous Sensing Systems 9

Yubo Luo and Shahriar Nirjon

A Unified Runtime Framework for Weakly-hard Real-time Systems 13
Hyunjong Choi and Hyoseung Kim

Memory Mapping Analysis for Automotive Systems.ccouuuiiiinieenninee... 17
Robert Hottger, Lukas Krawczyk, Burkhard Igel, and Olaf Spinczyk

QRONOS: Towards Quality-Aware Responsive Real-Time Control Systems................. 21
Peter Ulbrich and Maximilian Gaukler

AUTOSAR Runnable Scheduling for Automobile Control Application’s Optimal
Performance 25

Daeho Choi, Wootae Jeon, and Jong-Chan Kim

Demo Abstract: Testbed for Practical Considerations in Mixed-Criticality System Design 29

Vijaya Kumar Sundar and Arvind Easwaran

On Solving the IoT Development Silo Problem.............o i, 31
Michael C. Brogioli, William Games, and Richard Moats

Static Program Placement Platform for Embedded Multi-Core Multi-Cluster Systems. 33
Seiya Maeda, Yuya Maruyama, and Takuya Azumi

Fractional GPUs: Software-based Compute and Memory Bandwidth Reservation for GPUs. .. 35
Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan (Raj) Rajkumar

Experience Report: Lightweight Implementation of
a Controller Area Network to Ethernet Gateway

Florian Polzlbauer
Virtual Vehicle Research Center
Graz, Austria
florian.poelzlbauer @v2c2.at

Abstract—In this paper we share our experience of implement-
ing a Controller Area Network to Ethernet gateway. We present
two implementations, and assess their performance.

Index Terms—controller area network (CAN), Ethernet, gate-
way, implementation, automotive, SocketCAN, FreeRTOS

I. INTRODUCTION AND MOTIVATION

Our research-car for autonomous driving is equipped with a
large number of redundant sensors for environment perception
(radar, lidar, cameras, ultrasonic, differential GPS, ...) and em-
bedded computing platforms (DrivePX2 and MicroAutoBox).
This allows us to develop fault-tolerant ADAS functions (such
as Automated Emergency Braking) for various driving and
weather conditions.

However, integration of office-grade PCs (for rapid proto-
typing, monitoring, and debugging) is challenging due to the
number of CAN networks. In order to address this issue, we
decided to implement a Controller Area Network to Ethernet
gateway, which collects the CAN data and relays them via
Ethernet (and vice versa).

II. DESIGN

A. Requirements and Constraints

Our main requirements were as follows: The gateway must
relay all CAN-messages to the Ethernet network in the correct
ordering. No messages must get lost. The introduced delay
must be short and upper-bounded. CAN-over-Ethernet data
sent to the gateway shall be relayed to the according CAN-
network (again with short delay). However, the gateway must
not overload the CAN networks. The gateway must support
CAN 1.0 and CAN 2.0, and be future-proofed towards CAN-
FD. The Ethernet-side must be compatible with office-grade
PCs.

Based on these requirements we derived a set of key design
decisions: We use “standard” 100BaseTX Ethernet with CatSe
cables and RJ45 plugs. This allows us to integrate the gateway
into the already installed Ethernet network. Automotive Eth-
ernet (such as BroadR-Reach, 100BaseT1, or 1000BaseT1)
would need special hardware which would hinder compati-
bility with office-grade PCs. We use IP/UDP as the transport
layer. Inside the UDP packets, the CAN messages are encoded.
Protocols such as Audio Video Bridging (AVB) [1] or Time-
Sensitive Networking (TSN) [2] were initially considered, but
again it would complicate the integration of office-grade PCs.

Allan Tengg
Virtual Vehicle Research Center
Graz, Austria
allan.tengg @v2c2.at

B. Software Architecture

The gateway provides bidirectional data-exchange between
CAN and Ethernet. Hence, the architecture can be split into 2
paths.

Fig. 1 shows the CAN-to-Ethernet path. For each CAN port
we have a CAN-receive thread. Whenever a CAN message is
received, it immediately records a timestamp and then copies
the CAN message into a thread-safe FIFO. The FIFO keeps
track of how many CAN messages are queued inside, and
how many bytes this accounts for. If the number of CAN
messages reaches a user-defined value (i.e. max. number of
CAN messages per UDP packet) or the size reaches the UDP’s
MTU (i.e. 1472 bytes), the content of the FIFO is copied
into a UDP packet and the UDP packet is sent out. Details
about the encoding is discussed in section II-C. In addition
there is an Ethernet-transmit-timeout thread, similar to [3].
It is responsible for monitoring the time since the last UDP
packet was sent. Once this timespan reaches a user-defined
value (i.e. UDP-transmit timeout) the thread packs the content
of the FIFO into a UDP packet and sends it. This ensures that
the propagation delay from CAN to Ethernet is upper-bounded
by the timeout.

thread-safe FIFO

—{Ethernet Tx }

Fig. 1. Architecture: CAN-to-Ethernet

Fig. 2 shows the Ethernet-to-CAN path. The Ethernet-
receive thread listens for incoming CAN-over-Ethernet pack-
ets. Once such a UDP packet is received, it immediately
extracts all CAN messages and copies them into the respective
thread-safe FIFOs. There is one FIFO per CAN port. The FIFO
is responsible for queuing the CAN messages. The CAN-
transmit thread takes the oldest CAN message out of the FIFO
and sends it out onto the CAN network. In order to avoid
that the CAN network is overloaded by a large burst of CAN
messages, the CAN-transmit thread applies traffic-shaping. It
keeps track when the last CAN message was sent, and waits
for a user-defined timespan (i.e. min. waiting time between
CAN messages) before sending the next CAN message.

It has been shown [4] that FIFOs introduce an additional
queueing delay to CAN systems, and hence lead to a longer

‘ thread-safe FIFO ‘ }—)[CAM Tx J
| thread-safe FIFO ‘ }—)[CANZ TX }

‘ thread-safe FIFO ‘ }—){ CAN, Tx]

Fig. 2. Architecture: Ethernet-to-CAN

Ethernet Rx

response time. Priority-based queues would circumvent this
issue. However, the main reason for using FIFOs is that they
conserve the CAN message ordering. In automotive systems
there are many higher-level protocols (e.g. Diagnosis over
CAN) where the message ordering is of upmost importance.
Hence we had to accept the additional FIFO-delay, in order
to maintain the correct CAN message ordering.

C. CAN-over-Ethernet Protocol

In order to transmit CAN messages over the Ethernet
network, we have developed a lightweight encoding schema
(see table I). It starts with a header (see top). Afterward it
contains 0..N CAN message headers (see middle). Finally it
contains the payload-bytes of the CAN messages (see bottom)
which are arranged as CAN message 1 payload byte 1, CAN
message 1 payload byte 2, ..., CAN message N payload byte
M. The field payload offset is used to mark the start of each
message’s payload.

Field bits | Tx Rx | Description

protocol 16 X X 0x0100 marks a CAN-over-
Ethernet packet

version 8 X X future-proofing for protocol-
changes

trigger reason 8 X - why was packet sent by gateway

counter 32 X - number of packets sent by gate-
way since boot

timestamp (lo) 32 X - time [us] when packet was sent

timestamp (hi) 16 X by gateway

num. messages 8 X X number of CAN messages inside
packet

reserved 8 - - reserved for future-proofing

timestamp (lo) 32 X - time [us] when CAN message was

timestamp (hi) 16 X - received by gateway

source-port 8 X - CAN port at which CAN message
was received by gateway

destination-port 8 - X CAN port to which CAN message
must be routed by gateway

message 1D 32 X X CAN message ID (11 or 29 bits)

flags 8 X X flags for ext, rtr, err, fd-edl, fd-brs,
fd-esi

payload length 8 X X length [byte] of CAN message
payload

payload offset 16 X X where does the payload start

payload n*8 | x X | payload-bytes of CAN messages

TABLE I
CAN-OVER-ETHERNET PACKET ENCODING

Column Tx indicates that the field is relevant for packets that
are sent by the gateway (i.e. CAN-to-Ethernet). Column Rx
indicates that the field is relevant for packets that are received
by the gateway (i.e. Ethernet-to-CAN).

The field counter mainly serves a monitoring purpose, as it
allows to detect lost Ethernet packets. It can also act as the
gateway’s heartbeat. The field trigger reason gives insight into
the gateway’s CAN message queuing procedure.

We decided to use IP/UDP as the underlying protocol.
The gateway transmits the CAN-over-Ethernet packets to IP-
address X.X.X.255 (i.e. broadcast) to port 8001. This way,
each node on the network that listens on this UDP-port can
receive the CAN-over-Ethernet packets. The gateway itself
listens on UPD-port 8000 in order to receive CAN-over-
Ethernet packets.

D. Configuring the Gateway

The gateway can receive configuration messages for setting
several gateway-parameters. At the moment we support:

1) set timestamp [us] of gateway

2) set CAN baudrate [b/s]

3) set CAN termination

4) set timeout [ms] for CAN message queuing

5) set max number of CAN messages per UDP packet

6) set destination-IP for CAN-over-Ethernet packets

7) set waiting time [us] for CAN transmit (traffic shaping)

III. IMPLEMENTATION

We decided to implement two variants of the gateway
(details see table II). The automotive one features an AU-
RIX micro-controller running FreeRTOS. This should result
in highly deterministic behaviour. The general purpose one
features a Beaglebone Black micro-processor running Linux.
It should offer sufficient resources for future extensions (e.g.
CAN traffic logging/recording). Both gateway alternatives are
implemented in C/C++.

| General Purpose | Automotive

uC Beaglebone Black Rev. C [5] | AURIX TC275 [6]
CPU 1 core, ARM Cortex-AS8, 3 cores,

1 GHz 200 MHz
memory | 512 MB RAM, 4 MB program flash,

4 GB eMMC Flash 384 kB data flash
Ethernet | 100 Mb/s 100 Mb/s
CAN 2x CAN 4x CAN/CAN-FD [7]
oS Ubuntu 14.04.3 LTS [8] FreeRTOS 7.1.0 [9]
IP/UDP see Linux kernel IwIP [10]
CAN SocketCAN [11] own implementation

TABLE I
IMPLEMENTATIONS ALTERNATIVES

Automotive: Since FreeRTOS [9] did not support the AU-
RIX micro-controller out of the box, we first had to port it [12].
The port places one kernel-instance on each of the 3 cores,
and provides inter-core communication mechanisms. For the
gateway implementation however we only used one core.

General Purpose: As of Linux kernel version 2.6.25, Linux
supports the CAN protocol via the SocketCAN [11] library.
Here, CAN-communication is handled like other sockets. We
decided to use this library in order to evaluate its performance.
The individual parts of the gateway software are implemented
using pthreads.

IV. PERFORMANCE TESTS

A. Test Setup

In order to test the functionality and performance of the
gateway, we use the following setup: A PC is connected to
the gateway using a CAN-USB-adapter [13]. In addition the
PC is connected directly to the gateway via Ethernet. No

Ethernet switches are used in between, so that no additional
delays are introduced. The PC is responsible for generating
the stimulus (CAN or Ethernet), and receiving the gateway’s
response (Ethernet or CAN). Data is also logged for post-
processing and statistical analysis.

B. CAN-to-Ethernet

The CAN stimulus is generated as follows: A burst of b
CAN messages is sent. No waiting time in between them. After
the burst we wait 1..p ms (random uniform timespan between
1 and p, emulating a jittered period). Then we send the next
burst. This procedure is repeated until n CAN messages are
sent in total. All CAN messages have the same ID (0x000).
Each CAN message’s payload contains an uint64-number,
which is increased in steps of one. This allows us to detect
exactly which CAN message was lost (if any). In addition we
can detect if CAN messages arrive in the wrong order. This
would mean that the gateway would have modified the CAN
message sequence. The bursty traffic is inspired by the radar-
sensors which are used in our car. They send a burst every
66ms.

The first tests aim at detecting message loss and message
sequence flip. Therefore, we use the following test-scenarios:

burst b 1, 2,3, 4,5, 10, 20, 30, 40, 50
waiting l.p 1,5, 10, 50, 100, 500, 1000 ms
total n 10.000

Analysis of the response (UDP packets sent by the gateway)
we find that no message was lost, and all messages were
relayed in the correct order. This result applies to both
gateway implementations.

Next, we want to determine the minimum delay that is
introduced by the gateway. In order to measure this, we set
the gateway-parameter max. CAN messages per UDP packet to
1. By measuring the timespan from “CAN message is received
by the gateway” to “UDP packet is sent by gateway” we get
the propagation delay. Both time-instances are measured by
the gateway itself and can be retrieved from the UDP packet
(see packet encoding, table I). Note that this test does not
measure the additional delay that is introduced by the FIFO-
queuing, in case several CAN messages are queued. This time
however is upper-bounded by the parameter UDP-transmit
timeout. Our experiment solely focuses on the delay introduced
by the message re-coding.

First we want to see if the bursty nature of the CAN traffic
has any impact onto the gateway’s propagation delay. Thus,
we use the following scenarios:

burst b 1, 5, 10, 30, 50
waiting l.p 10 ms

total n 10.000

timeout to 1000 ms

For the automotive gateway we measured a propagation
delay of up to 40 us. For the general purpose gateway the
delay is similar, however some outliers range up to 100 us
(see fig. 3). By taking a closer look we find that 50% of the
values are between 10 and 11 us (automotive) and 5 to 6 us
(general purpose).

Next, we want to see if the periodicy of the CAN traffic
has any impact onto the gateway’s propagation delay. Thus,
we use the following scenarios:

| ¢
100 ° N
¢
3 809 ¢
=
2 60 Implementation
2 I General Purpose
_g [Automotive
; 40 ¢
3 ' ' ') "
¢
20 A
R N DT B
0+ T T - T T = .
1 5 10 30 50
Burst of CAN Messages
Fig. 3. Propagation delay, for varying bursts
burst b 1
waiting 1.p 1,5, 10, 50, 100, 500, 1000 ms
total n 10.000
timeout to 1000 ms

For the automotive gateway we measure a propagation delay
of 10 to 50 us (with one outlier of 100 us). For the general
purpose gateway the delay is up to 100 us, with one outlier of
150 us (see fig. 4). By zooming in we see that 50% of the data
is between 10 and 11 us (automotive) and 5 to 11 us (general
purpose). Interestingly, for the general purpose gateway, the
propagation delay slightly increases as the periodicy of the
CAN traffic increases.

160
Implementation ¢

140 | B General Purpose
I Automotive

fun

N

o
L

=
el
= 1001 ¢
o
° $ ¢
2 80
£ 601 ¢
3
el
201 : ¢
— - — -+ N e ——
ol = = - ¢ 5
1 5 10 50 100 500 1000

CAN Message Period [ms]
Fig. 4. Propagation delay, for varying periodicy

In conclusion, the automotive gateway is more predictable
(due to the real time operating system), but the general purpose
gateway has smaller propagation delays (due to the higher
processing power). Both gateways perform acceptably well.
No CAN messages get lost, nor is the message sequence
altered.

C. Ethernet-to-CAN

The UDP stimulus is generated as follows: A set of b CAN
messages are packed into a UDP packet and sent out. After
that we wait 1..p ms. Then we send the next UDP packet
containing b CAN messages. This procedure is repeated until
n UDP packets are sent. All CAN messages have the same ID
(0x001). Each CAN message’s payload contains an uint64-
number, which is increased in steps of one. This allows us to
detect exactly which CAN message was lost (if any). and if
the CAN messages arrive in the wrong order.

First, we want to test if all CAN messages get properly
relayed (no message lost, sequence maintained). Secondly we
want to see if the CAN transmit traffic shaping works as
intended. Therefore we use the following scenarios:

batch b 60
waiting l.p 1,5, 10, 50, 100, 500, 1000 ms
UDP n 1000

0, 100, 150, 250, 500, 1000 us

min. Tx waiting mw

As we decrease the periodicy of the UDP packets below 50
ms, we noted that the automotive gateway could no longer
handle all CAN messages. It started losing several CAN
messages (see fig. 5). This can be explained as follows: Due to
the limited memory of the Aurix micro-controller, we decided
to limit the CAN out FIFOs to 1000 messages (for each CAN
port). For average Ethernet-to-CAN traffic this should be suf-
ficient. However our performance tests intentionally used high
traffic in order to identify the limits of our implementation.

—e—successrate —e— max CAN ut

L1 100
=) .

0 0,9 G 50
G T~ =
H £
| c
o 07 o
o og =]
e 0.6 5]
505 00
z 2
I
204 0 =
Z 03 VI
o 3
4 02 20 %
2 £
o -
201 10

2 0 0

1 10 100 1000

UDP period [ms]

Fig. 5. Ethernet-to-CAN Tests, automotive

On the Beaglebone micro-processor we have 512 MB RAM.
Hence, here we decided to use a dynamic FIFO size for the
CAN out FIFOs. As a consequence we did not notice any
message-loss for the general purpose gateway.

Since the general purpose gateway has sufficient space to
queue the CAN messages, we implemented the CAN transmit
traffic shaping here (in order to smooth out CAN traffic peaks).

As we increase the CAN transmit waiting time of the traffic-
shaper, we can effectively decrease the CAN utilization (see
fig. 6).

1000
max CAN
Utilization [%]

W E0-100

60-80

40-60

CAN Tx Waiting [us]

100

1000 500 100 50 10

wn
-

UDP period [ms]
Fig. 6. Ethernet-to-CAN Tests, general purpose, CAN traffic shaping

However, we also noted an issue. As we decrease the CAN
transmit waiting time below 150 us, we started losing CAN

messages. For 100 us, the loss-rate was between 4 and 23%.
For 0 us, the loss-rate was between 35 and 63%.

We strongly suspected that this issue is rooted in the
SocketCAN library. As shown in [14] SocketCAN shares a
single buffer for all sockets (CAN, Ethernet, Bluetooth, etc.).
Hence, if the rate of messages is too short, messages will
simply be overwritten by new ones. One solution would be to
use the LinCAN library [15]. For now, we decided to lower-
limit the waiting time of the traffic-shaper to 150 us.

V. CONCLUSION & OUTLOOK

The systematic assessment of the gateway-implementations
shows that both gateways meet our demands. While the
automotive one offers slightly better predictability, the general
purpose one offers significant resource-reserves for future
extensions (such as data-recording).

In the future we want to improve the predictability of the
general purpose gateway by utilizing the PREEMPT _RT patch
or real-time Linux. We also consider switching to TCP/IP to
utilize its acknowledgment mechanism to increase reliability.

ACKNOWLEDGMENT

The project “AutoDrive” has received funding from the Electronic Com-
ponent Systems for European Leadership Joint Undertaking under grant
agreement No 737469. This Joint Undertaking receives support from the
European Unions Horizon 2020 research and innovation programme and Ger-
many, Austria, Spain, Italy, Latvia, Belgium, Netherlands, Sweden, Finland,
Lithuania, Czech Republic, Romania, Norway. In Austria the project was also
funded by the program “IKT der Zukunft” and the Austrian Federal Ministry
for Transport, Innovation and Technology (bmvit). The publication was written
at VIRTUAL VEHICLE Research Center in Graz and partially funded by the
COMET K2 Competence Centers for Excellent Technologies Programme of
the Federal Ministry for Transport, Innovation and Technology (bmvit), the
Federal Ministry for Digital, Business and Enterprise (bmdw), the Austrian
Research Promotion Agency (FFG), the Province of Styria and the Styrian
Business Promotion Agency (SFG).

[2]
[3]

[4]

[5]
[6]

[7]

[8]
[9]
(10]

[11]
[12]
[13]

[14]

[15]

REFERENCES
IEEE, “Audio video bridging task group,” http://www.ieee802.org/1/
pages/avbridges.html.
, “Time-sensitive networking task group,” http://www.ieee802.org/
1/pages/tsn.html.

J.-L. Scharbarg, M. Boyer, and C. Fraboul, “CAN-Ethernet architectures
for real-time applications,” in IEEE Conference on Emerging Technolo-
gies and Factory Automation (ETFA), 2005, pp. 245-252.

R. 1. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller Area
Network (CAN) Schedulability Analysis with FIFO Queues,” in Euromi-
cro Conference on Real-Time Systems (ECRTS), 2011, pp. 45-56.
“Beaglebone Black,” https://beagleboard.org/black.

Infineon, “AURIX TC270 / TC275 / TC277,) 2017, data-sheet:
https://www.infineon.com/dgdl/Infineon-TC27xDC_DS_v10-DS-v01_
00-EN.pdf?fileld=5546d46259d9a4bf015a846b292f74ce.

——, “Controller Area Network Controller (MultiCAN),”
2015, application-note: http://www.infineon.com/dgdl/
Infineon-MultiCAN-XMC4000- AP32300- AN-v01_00-EN.pdf?fileld=
5546d4624e765da5014ed91d6be32110.

“Ubuntu,” https://www.ubuntu.com.

R. Barry, “The FreeRTOS Kernel,” https://www.freertos.org/.

A. Dunkels, “IwIP - A Lightweight TCP/IP stack,” https://savannah.
nongnu.org/projects/lwip/.

“SocketCAN,” https://github.com/linux-can/.

A. Tengg, “FreeRTOS 7.1 Port for Aurix (TC27x) using Free Entry
Toolchain,” https://interactive.freertos.org/hc/en-us/community/posts/
210026366-FreeRTOS-7- 1-Port-for- Aurix-TC27x-using-Free- Entry-Toolchain.
PEAK Systems, “PCAN-USB FD: CAN-FD-Interface for High-Speed
USB 2.0,” https://www.peak-system.com/PCAN-USB-FD.365.0.html?
&L=1.

M. Sojka, P. Pisa, M. Petera, O. Spinka, and Z. Hanzalek, “A Com-
parison of Linux CAN Drivers and their Applications,” in International
Symposium on Industrial Embedded Systems (SIES), 2010.

P. Pisa, “Linux/RT-Linux CAN driver (LinCAN),” http://freshmeat.net/
projects/lincan.

Time-Aware Deep Intelligence on Batteryless
Systems

Bashima Islam, Seulki Lee and Shahriar Nirjon
University of North Carolina at Chapel Hill
{bashima, seulki, nirjon}@cs.unc.edu

Abstract—In this paper, we propose real-time scheduling
algorithms for batteryless sensing and event detection systems
which execute real-time deep learning tasks and are powered
solely by harvested energy. The sporadic nature of harvested
energy, resource constraints of the embedded platform, and the
computational demand of deep neural networks pose a unique
and challenging real-time scheduling problem for which no
solutions have been proposed in the literature. We empirically
study the problem and model the energy harvesting pattern as
well as the trade-off between the accuracy and execution of a
deep neural network. We develop an imprecise computing-based
real-time scheduling algorithm that improves the schedulability
of deep learning tasks on intermittently powered systems.

I. INTRODUCTION

The Internet of Things (IoT) promises to make our lives effi-
cient, productive, enjoyable, and healthier by making everyday
objects capable of sensing, computation, and communication.
Many of these so-called IoT devices are powered by limited-
capacity batteries—which makes them portable, mobile, small,
and lightweight. Batteries, however, require periodic mainte-
nance (e.g., replacement and recharging) which is an incon-
venience at a large scale. To address this practical problem,
batteryless IoT devices have been proposed, which harvest
energy from ambient sources, e.g., solar, thermal, kinetic, and
RF to power up the device. These devices, in principle, last
forever—as long as the energy harvesting conditions are met.
They typically consist of low-power sensors, microcontrollers,
and energy-harvesting and management circuitry, and their
applications are in many deploy-and-forget scenarios, e.g.,
wildlife monitoring, remote surveillance, environment and
infrastructure monitoring, wearables, and implantables.

Many IoT applications require timely feedback. For in-
stance, in an audio surveillance system, audio events such as
gunshots, screaming, and breaking ins need to be detected
and reported as fast as possible to initiate prompt actions.
Similarly, an air-quality monitoring system needs to identify
events such as gas-leakage or outbreak of harmful pollutants
on time to avoid a disaster. Likewise, shared resources, such
as gym-equipment and shared bikes in a campus, can be
monitored in real-time to detect misuses or malfunctions, and
to inform the authority about the incidence on time. While
a batteryless system is desirable in these real-time sensing
and event detection applications, the unpredictability of the
harvested energy, combined with the complexity of on-device
event detection tasks, complicates timely execution of machine
learning-based event detection tasks on batteryless systems.

— .

0 5 10 15 20 25 30 35 40 45 50 55 60

(a)

]
;|On
5

D-Ofi — time

T, deadline
miss

time
0 5 10 15 20 25 30 35 40 45 50 55 60

(b)
Fig. 1: (a) With constant power both deadlines are met. (b)
With intermittent power, task 75 misses deadline.

Prior works on time-aware batteryless computing systems
are primarily of two types. The first category focuses on time-
keeping, i.e., maintaining a reliable system clock [1] even
when the power is out. The sporadic nature of harvested
energy in a batteryless system forces it to run intermittently
by going through alternating episodes of power on and power
off phases, which disrupts the continuity of the system clock.
By exploiting the rate of decay of an internal capacitor
and the content of the SRAM, these systems enable time-
keeping during the absence of power. The second category
proposes runtime systems that consider the temporal aspect of
data across power failures [2]-[4]. [2] discards data after a
predefined interval and thus saves energy by not processing
stale data. [3], [4] propose energy-aware runtime systems to
increase the likelihood of task completion. However, none of
these consider the utility of data to the running application or
the real-time deadline-aware execution of tasks.

Scheduling real-time machine learning tasks on a batteryless
computing system is an extremely challenging feat. The two
main sources of challenges are the intermittent power supply
and the computational demand for executing machine learning
tasks. These two challenges have been studied extensively in
non-real-time settings. For instance, [5]-[9] enable seamless
execution of non-real-time tasks on intermittently powered
systems by proposing techniques that save and restore the
program state across power failures. [10]-[12] propose light-
weight and compressed deep neural networks for on-device
machine learning on batteryless systems. However, none of
these works consider the timing constraints of the machine
learning tasks. In a real-time setting, simply applying these
two types of solutions in conjunction with an existing real-
time scheduling algorithm does not quite solve the problem at
hand, which is illustrated in Figure 1. We consider two tasks,
71 and 79, having the release times of 0 and 25, respectively.

Their deadlines are 45 and 56, and both have an execution
time of 28. In Figure 1(a), we observe that, under the earliest
deadline first (EDF) scheduling, both tasks meet the deadlines
when the power is uninterrupted. On the other hand, when
power is intermittent, Figure 1(b) shows that task 7o misses
its deadline.

The goal of this paper is to subdue the aforementioned chal-
lenges. In order to accomplish our goal, at first, we thoroughly
study the energy harvesting pattern as well as the accuracy-
execution trade-off of deep neural networks. From these stud-
ies, we make two observations. First, energy generated by a
harvester is bursty, and therefore, its energy harvesting pattern
can be modeled using a stochastic framework over a short
period in time. Second, for a fixed classification accuracy,
the amount of computation required for an input signal is
dependent on the hardness of the data. We measure hardness
in run-time using confidence of the classification result. By
exploiting these two observations, we are able to design
an imprecise computing-based, online, dynamic-priority, real-
time scheduling algorithm that considers both the intermittent
nature of the power supply as well as the accuracy-execution
trade-off of the deep neural network model.

We conduct a simulation-driven experiment to evaluate
the performance of the proposed scheduling algorithm. We
generate 1,000 deep inference tasks, where a task refers to
the execution of deep neural network inference for a data
sample. We randomly assign different levels of hardness to
each sample, where the hardness of a task indicates the
number of layers required to achieve a certain classification
accuracy. We compare the proposed scheduling algorithm with
an earliest deadline first (EDF)-based imprecise scheduling
algorithm as well as with a classification error-based imprecise
scheduling algorithm. We show that our proposed algorithm
misses 22%-25% less deadline while achieving 5%-7.5%
better classification accuracy.

II. PRELIMINARY STUDY

In this section, we study the energy harvesting pattern and
the accuracy-execution trade-off of deep neural networks.

A. Modeling Energy Harvesting Pattern

Energy Events. Transiently powered systems operate inter-
mittently because energy is not always available to harvest
and, even when energy is available, buffering sufficient energy
to perform adequate work takes time. In most cases, the
pattern of this intermittency is stochastic and thus modeling
this patter is not straight forward. To schedule the workload
of an intermittently operating system at run-time, we decide
whether to start execution of a task or not at a time instant.
This decision heavily depends on the availability of energy
available to harvest. To model the availability of energy,
we define energy event which expresses the availability of
sufficient energy during a period. Energy event represents a
successful generation of at least K Joules of energy in total
during T time slot. Here, K and T are system dependent. In
order to understand the property of energy events, we observe

the phenomenons causing energy events. For example, in a
piezo-electric harvester, taking a minimal number of steps that
generates at least K Joule of energy during T time slot is
considered equivalent to the occurrence of an energy event.
Similarly, we consider a minimal number packet transmissions
per time slot and minimum intensity of solar per time slot as
energy events for RF and solar harvesters, respectively.

Properties of Energy Events. We study energy event patterns
of three commonly used harvesters — piezo-electric harvester,
solar harvester, and RF harvester from datasets. These datasets
contain the number of steps taken during every 5-minute time-
slot for 61 days, harvested solar energy measurements for
three days and outbound packet transmission rate by an RF
transmitter for 30 days. This study reveals two interesting
observation about the pattern of energy events — (1) energy
events occur in bursts where burstiness is the intermittent
increases and decreases in activity or frequency of an event [?],
(2) a probabilistic relation exists among the consecutive energy
events during a short period. In other words, the occurrence
of an energy event increases the probability of the next energy
event during a short period. To illustrate, when a person starts
walking the probability of continuing the walk is high within
the first few time slots. This probability decreases with time.
Likewise, when a person is sitting probability of remain set is
high immediately, but decreases after a while.

Conditional Energy Event. We define conditional energy
event (CEE) that represents the conditional probability of an
energy event occurrence based on the occurrence/ absence of
previous consecutive energy events. CEE(N) is the probability
that an energy event will occur given immediately preceding
N consecutive energy events occurred (for N > 0) or not
occurred (for N < 0) The following equation expresses CEE.

p(occurrence| N consecutive occurrence), if N>0 (1

p(occurrence| N consecutive non-occurrence), if N < 0

CEE(N) = {

To illustrate CEE(10) = 90% implies that the next energy event
will occur with 90% probability if 10 immediately preceding
consecutive energy event occurred. Similarly, CEE(-15) = 5%
indicates the probability of an energy event at the current time
slot is 5%, given that there were no energy events in the last
15 slots.)

The CEE of a system powered by a persistent power
supply or an ideal harvester that has no intermittence looks
like Figure 2(a). Figure 2(b-d) shows the CEE of three
energy harvested systems. From these figures, we observe that
for a small value of N these systems demonstrate similarity
with the ideal correlative harvester. We measure the similarity
of CEE of a harvested system with persistent powered or
ideal harvested system using Kantorovich-Wasserstein (KW)
distance. Through out this paper, we use KW to express the
Kantorovich-Wasserstein distance between the CEE a system
(H) and the CEE of persistently powered system (P). We also
observe that for large |N| the CEE drops significantly because
when the interval time between the first and current event
increases their probabilistic relation decreases. For example,

1 1

0.8 0.8
Zos Zo06
o 0.4 0.4
o
0.2 0.2
0 0
-20-16-12-8 -4 0 4 8 12 16 20 BRIGITT2UIRAI
N N (T =5 minutes)
(a) KW=0, =1 (b) KW=0.17, =0.65
1 1
0.8 0.8
Zos Zos6
Bo4 w04

0.2

N (T = 1 minute)

N (T = 10 minutes)

(c) KW=0.06, =0.84 (d) KW=0.11, =0.76

Fig. 2: (a)CEE for persistent power source. (b) CEE for piezo-
electric harvester. (c) CEE for solar harvester. (d) CEE for RF
harvester. We use N=20 for calculating KW and .

a person is walking for a long time has a high probability of
stopping.
B. Study of Deep Neural Network

In order to execute machine learning tasks in a resource-
constrained batteryless system, we need to minimize memory
and computation costs. To achieve this goal, we study several
attributes that are unique to deep learning processes.

o Significance of depth. Deep learning algorithms have
layered structures where the input of the first layer is from
an external source, e.g., sensors. The output of a layer is fed
as the input of the next layer, and it goes on until the end of
the network. The total number of layers in a neural network
is called depth. Increased number of layers and neurons
both contribute to more complicated calculation resulting in
higher accuracy. However, a shallow network requires width
exponential to that of a deeper network to achieve similar
accuracy. Therefore, the performance of a neural network does
not only depends on the number of parameters but also depth.
For example, VGGNet has 16 layers with 140M parameters,
while ResNet beats it with 152 layers but only 2M parameters.

2 ®
g 8
v
w

s
ocrNwWAE GO

Accuracy (%)
[N
8

>= 80% accuracy

°

0 50 100 150

8
Number of Layers needed for

Number of Classes

mEasy Data = Hard Data

milayer w2 Layer m3layer m4layer

Fig. 3: (a) The accuracy and execution time of all data where
each data executed a certain depth. (b) Hard data requires
complex representation to achieve similar accuracy.

To illustrate the effect of depth let us consider a face
detector. The first layer of this deep learning based face
detector learns basic features, e.g., edges. In the next layer,
a collection of edges, e.g., shape, is learned. The next layer

might output a higher level feature, e.g., nose and the final
output face abstraction in the last layer. To understand the
effect, we develop acoustic deep neural network classifier
with four layers and choose UrbanSound8K dataset which
has ten classes. We use raw waveform of audio as input to
the in Figure 3(a) shows that the depth has a linear relation
with classification accuracy. However, this increased accuracy
comes with the cost of higher execution time.

e Data-dependency of required depth. To decrease the
execution time we observe the fact that depth is highly data-
dependent [13]. If target classes are profoundly distinctive,
then simple features can be used to distinguish them. For
example, in Figure 3(b), audio of cat and water (easy data)
are very distinguishable; thus a single layer RL achieves 93%
accuracy. On the other hand, similar classes, e.g., train and he-
licopter (hard data) needs more complex representations to be
distinct and thus require five layers to achieve 81% accuracy.
By executing only necessary layers based on the hardness of
data we can achieve similar accuracy with decreased execution
time. We define the number of layers needed for a data sample
to achieve a certain classification accuracy as hardness of that
data sample.

III. SOLUTION

To achieve our goal of executing machine learning tasks
on a batteryless computing system on time, we propose the
following solutions.

A. Predictability Factor

Based on our observation in Section II-A regarding the
presence of probabilistic correlation between energy events,
we propose an energy event predictability factor n. A n of
1 indicates a high correlation between energy events, while
1 = 0 indicates that energy events are independent.

B. Dynamic Imprecise Task Model with Early Exit

In Section II-B, we witness that the number of layers
requires to achieve a certain accuracy depends on the hard-
ness of data. Therefore, layer-aware early termination of a
network is possible. We consider a task (7) as the execution
of the deep neural network for a sample. A scheduler can
preempt 7 only at the end of the execution of each layer. We
define such tasks as conditional-preemptive tasks. Conditional
preemptive tasks are different from cooperative tasks due to
their ability of preemption before completion. This consists
of two portions — mandatory and optional where mandatory
precedes the optional. Completion of only the mandatory part
within the deadline is considered schedulable. Executing the
optional portion contributes to decreasing error. We consider
the execution until the accuracy reaches a threshold as the
mandatory portion. As the task is monotone, the optional
portion execution might reduce the error. Due to the data
dependency of layer-aware prior termination, the imprecise
computing model in this paper is different from previously
introduced imprecise computing. Unlike traditional imprecise

computing [14], [15] where the execution time of the manda-
tory potion is pre-knowledge, the execution time of mandatory
portion in this paper is determined at run-time. We define such
imprecise tasks as Dynamic Imprecise Tasks.

C. Priority Scheduling Algorithms

Finally, we propose a priority scheduling for dynamic
imprecise tasks that minimize the error while scheduling the
mandatory portions and name our priority function certainty
function. To illustrate, let us consider a task-set consisting
of 3 tasks (71, 79 and 73) where the release time are 0,
25 and 50 respectively. Their deadlines are 45, 56 and 92
respectively. We assume that there are ten layers in the network
and the mandatory portions of the tasks contain two layers,
four layers, and three layers respectively. The execution time
of each layer is 5, 5, 6, 7, 6, 5, 7, 7, 6 and six sequentially. In
Figure 5(a), EDF fails to schedule the second task; however,
certainty function can schedule all three tasks in Figure 5(b).
In Figure 5(c-d) we take another case into account where
the deadlines are 59, 69 and 84 respectively. The mandatory
portion contains five, two and one layers consecutively. Even
though both EDF and certainty function succeeds to schedule
all the tasks, the accumulated error of the EDF schedule (20%)
is higher than that of certainty function schedule (12%). For

T, meets deadline by executing T, meets deadline by executing
mandatory execution time is 23 mandatory portion

- |

0 5 10 15 20 25 30 35 40 45 50 5560 65 70 75 go O 5 10 1520 25 30 35 40 45 50 5560 65 70 75 80

5 10 15 20 25 30 35 40 45 50 5560 65 70 75 8085 O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Fig. 4: (a) EDF fails to meet imprecise deadline. (b) Certainty
function meets imprecise deadline (c) EDF meets deadline
with 20% error (d) Certainty function meets deadline with
12% error.

an energy harvester with high 7, we introduce a variant of
this algorithm that can boost the utilization. When the energy
event rate is high, we schedule exhaustively, opportunely
taking advantage of correlated energy event occurrence. When
the energy event does not occur, the scheduler considers the
high probability of energy event non-occurrence and schedules
conservatively. During the exhaustive mode, the scheduler
schedules optional tasks if there is a slack time like our
proposed priority scheduling. In this mode, the scheduler
considers that the system has enough incoming energy events
for future jobs. On the other hand, during the conservative
mode, the system consumes energy only when it is a must.
Therefore, it only schedules mandatory portions and ignores
the optional part completely. Thus it preserves power to spend
on the mandatory portion of the upcoming tasks assuming low
energy event rate.

In Figure 5, we compare our proposed certainty func-
tion based priority scheduling with classification error based

300 30

2

00 g0

§ 15

100 & 10

50 5

o | .
EDF EDF

Error based
Priority

3
3

Deadline Miss Count
I
&

Error based
Priority

Certainty
based Priority

Certainty
based Priority

Fig. 5: Certainty function based priority scheduling meets
more imprecise deadline with smaller error

priority scheduling and earliest deadline first (EDF) based
imprecise scheduling with simulation. We simulate 1000 deep
inference tasks with the early exit and 10-fold cross-validation.
Each task refers to a data sample executing a ten layer deep
neural network, and we randomly assign hardness to each data
sample. Our proposed scheduler achieves 7.5% decreased error
while meeting the deadline for 20% more tasks.

ACKNOWLEDGMENT

This paper was supported, in part, by NSF grants CNS-
1816213 and CNS-1704469.

REFERENCES

[1] J. Hester, N. Tobias, A. Rahmati, L. Sitanayah, D. Holcomb, K. Fu,
W. P. Burleson, and J. Sorber, “Persistent clocks for batteryless sensing
devices,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 15, no. 4, p. 77, 2016.

[2] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017, p. 17.

[3] M. Buettner, B. Greenstein, and D. Wetherall, “Dewdrop: an energy-
aware runtime for computational rfid,” in Proc. USENIX NSDI, 2011.

[4] T. Zhu, A. Mohaisen, Y. Ping, and D. Towsley, “Deos: Dynamic
energy-oriented scheduling for sustainable wireless sensor networks,”
in INFOCOM, 2012 Proceedings IEEE. 1EEE, 2012, pp. 2363-2371.

[5] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” Acm Sigplan Notices,
vol. 47, no. 4, pp. 159-170, 2012.

[6] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-
Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: a self-calibrating
and adaptive system for transiently-powered embedded devices,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 12, pp. 1968-1980, 2016.

[71 K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution with-
out checkpoints,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, p. 96, 2017.

[8] A. Colin and B. Lucia, “Chain: tasks and channels for reliable intermit-
tent programs,” ACM SIGPLAN Notices, 2016.

[9] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe

efficient intermittent computing,” in 13th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 18), 2018.

G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent deep neural

network inference,” SysML, 2018.

S. Nirjon, “Lifelong learning on harvested energy,” in Proceedings of the

16th Annual International Conference on Mobile Systems, Applications,

and Services. ACM, 2018, pp. 500-501.

B. Islam and S. Nirjon, “Poster abstract: On-device training from sensor

data onbatteryless platforms,” in The 18th ACM/IEEE Conference on

Information Processing in Sensor Networks. ACM/IEEE, 2019.

T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural

networks for efficient inference,” arXiv preprint arXiv:1702.07811,

2017.

[14] W.-K. Shih and J. W.-S. Liu, “On-line scheduling of imprecise com-

putations to minimize error,” in Real-Time Systems Symposium, 1992.

IEEE, 1992, pp. 280-289.

Y.-X. Zhang, C.-H. Fang, and Y. Wang, “A feedback-driven online

scheduler for processes with imprecise computing,” Journal of Software,

2004.

(10]

(11]

[12]

[13]

[15]

SpotON: Just-in-Time Active Event Detection on
Energy Autonomous Sensing Systems

Yubo Luo
Department of Computer Science
UNC Chapel Hill
yubo@cs.unc.edu

Abstract—We propose SpotON, which is an active event detec-
tion system that runs on harvested energy and adapts its sleeping
cycle to match the distribution of the arrival of the events of
interest. Existing energy harvesting systems wake up periodically
at a fixed rate to sense and process the data to determine if
the event of interest is happening. In contrast, SpotON employs
reinforcement learning to learn the pattern of events at run-time
and uses that knowledge to wake itself up when events are most
likely to happen. Being able to remain asleep more often than
a fixed wake-up system, SpotON is able to reduce energy waste,
increase the amount of harvested energy, and be able to remain
active for longer period in time when the events of interest are
more likely to occur. We conduct a simulation-driven experiment
to compare our proposed solution with a fixed-schedule system
and results show that SpotON is able to capture 2-5X times more
events and is 3-12X more energy-efficient than the baseline.

Index Terms—Energy harvesting, Q-learning, Event detection.

I. INTRODUCTION

As the development of computational power, computing
algorithm and hardware, more and more stand-alone and sus-
tainable applications are emerging, pushing the world forward
to the ultimate instantiation of the Internet of Things (IoT)
— the “Smart Dust”. Smart Dust is a system of many tiny
microelectromechanical systems that are energy autonomous
[3]. However, current IoT world is dominated by battery-
powered systems which are bulky and unsustainable. Energy
harvesting is one of the ways that can lead us to the final
instantiation of IoT.

Energy harvesting systems harvest energy from various
energy sources, such as RF, piezoelectric or solar. It eliminates
the need for replacing batteries and enables energy autonomy
which is crucial to long-term sensing applications.

To achieve energy autonomy, we have to overcome chal-
lenges resulting from energy harvesting. First, computation in
energy harvesting systems is intermittent and this causes prob-
lems because most computing algorithms are long-running
programs. There is literature addressing how to enable correct
execution of existing long-term running programs on energy
harvesting systems by guaranteeing atomicity, data consis-
tency, forward progress [7], [8]. Second, energy supply in
energy harvesting systems is so limited that energy efficiency
is crucial. Dewdrop [4] takes iterative tasks as a scheduling
problem and dynamically changes the starting voltage based

Shahriar Nirjon
Department of Computer Science
UNC Chapel Hill
nirjon@cs.unc.edu

i Wake up [
Dynamic Strategy e
o
3 >
2c
& uw
T
K t
Fixed Strategy Wsalez :p]

—

Harvested
Energy

Event
Probability

t

Fig. 1. Comparison between fixed and dynamic strategies. The fixed strategy
can only detect a small fraction of total events but the dynamic strategy only
wakes up during event-active time intervals and thus detects more events.

on the size of the next task to improve energy efficiency.
Capybara [8] deploys an array of capacitors with different
capacitance and dynamically changes the capacitance of the
system. Mayfly [10] considers the timeliness of data and
discards stale data to avoid wasting energy in learning outdated
data. Third, event detection is a typical and important task in
IoT world, but active event detection has yet not been well
studied. Active event detection means that the event itself can
not produce a trigger signal to wake up the micro-controller
(MCU), and it requires the MCU to actively sense the event.
More detailed explanation about passive and active event
detection is described in Section II. There is one approach
called Monjolo [5] addressing passive event detection in
energy harvesting systems. It uses the energy harvested from
the event itself as a trigger to wake up the system and thus
avoids active sensing. However, Monjolo only applies to cases
where the event itself can generate a certain amount of energy
that Monjolo uses as a trigger. As far as we know, there is no
literature addressing cases where the target event itself can not
serve as a trigger. Thus, we propose SpotON, the first energy
harvesting system that deals with active event detection by
waking up just in time.

Most existing intermittently powered systems have pre-
defined turn-on and turn-off thresholds, which means the
system periodically wakes up at each capacitor charging cycle.
Though some of them dynamically change the thresholds
according to the complexity of the next task, they are still

in the category of periodically charging and discharging, as
shown in Figure 1. The key to enabling active event detection
in energy autonomous systems is to ensure that there is
enough energy left in the storage capacitor to power up the
microcontroller when the event is about to happen. If the
system magically knows when the event is about to happen,
it can wake up more frequently during this time interval but
remain powered-off more frequently at other times. SpotON
learns the event pattern, predicts when the event is more likely
to happen, keeps the system in powered-off more frequently
when events are not active, and saves surplus energy in a
dedicated capacitor array which can compensate the massive
energy consumption of frequent waking-ups when events are
active. In this way, we can borrow energy harvested from
previous charging cycles.

In real-life scenarios, events behaves in a pattern which
may change over time. SpotON uses a reinforcement learning
algorithm — Q-learning to learn the event pattern online. If
the event pattern changes over time, SpotON learns the new
pattern and updates the system, making itself a “real-time”
event detector.

II. PROBLEM

The key to enabling active event detection is to decide when
to wake up the MCU. One important part of the waking up
process is the trigger mechanism. We classify the waking
up trigger into the following three categories [6]: periodic,
opportunistic and event-based.

The periodic trigger wakes up the MCU at a fixed period,
which requires a predictable energy supply. This type of
trigger is rare in intermittent systems. The opportunistic trigger
is common in intermittent systems which depends on the
harvestable energy and a predefined voltage threshold. If
the voltage of the storage capacitor reaches V;;, the trigger
is activated, and the MCU keeps running until the voltage
decreases to V,;,. This type of trigger usually requires a
dedicated voltage detection circuit and a power management
module [8]. The event-based trigger wakes up the MCU based
on an expected event. The system needs to harvest enough
energy before a trigger event happens in order to be woken
up successfully. If an event happens before enough energy is
stored up the system will miss this event. The detection rate of
this type of trigger is bounded by the capacitor recharging rate
[5], [6]. SpotON can be considered as an event-based trigger
but it applies to entirely different applications. The event-based
trigger mentioned in [5], [6] only applies to cases where the
event itself can actively activate a trigger signal, and this signal
is leveraged to wake up the MCU. This trigger-activating
process does not involve MCU. Possible applications for this
type of event-based trigger include door opening detection [6]
where the action of opening the door itself can vibrate a piezo
sensor and generate a trigger signal and airflow monitoring
[11] where the airflow itself can also vibrate a piezo sensor
and generate a trigger signal. This type of sensing is passive.
The MCU just passively waits for an waking-up signal.

However, there are many applications whose target event
can only be passively captured by active sensing controlled by
the MCU, e.g., wildlife watering monitoring and environment
noise detection. This type of applications requires active
sensing from the MCU. SpotON is specially designed for this
type of event detection. It learns the event pattern and uses it
as an internal event-based trigger. SpotON only benefits cases
where the event happens in a certain pattern that we can use
some learning algorithm to learn. If the target event happens
randomly without any pattern, then it is not a proper candidate
application for SpotON.

We call our internally triggered waking-up approach a
dynamic strategy, compared to the commonly used approaches
which are static or fixed. Current fixed systems use up all
energy immediately once they are charged to a threshold
voltage and wake up. They do not borrow energy from pre-
vious charging cycles. By saying SpotON a dynamic strategy,
we do not mean that the threshold voltages or the storage
capacitance is dynamic, we mean that after the system has
already harvested enough energy to wake up, it dynamically
chooses to wake up at which frequency level, e.g., high
frequency, low frequency or even not waking up, based on
the learned event pattern. In this way, SpotON is able to wake
up just in time.

III. DESIGN OVERVIEW/ IMPLEMENTATION

To wake up the system in a proper time at a proper
frequency based on the event pattern, we use reinforcement
learning to implant this intelligence into SpotON.

Initialize Q-table

o = | Actions
! 3 oose a waking-up | !
Choose an Action r——— | a;|a; | . |ay
i this || s;|0[0]..]0
i| Perform Action WD CpERnEiE § 9 :
i entire state | =15, 0|l0]...]0
| h »
1 events it detects
! s, | 0|0 0

Update Q-table

(a) (b)

Fig. 2. (a) Workflow of Q-learning [1]; (b) Initialized Q-table.
A. Q-Learning

Q-learning is employed to help SpotON learn the event
pattern and make waking-up decisions. Q-learning [9] is an
effective way of making optimal decisions to achieve the
best reward based on past observations. The workflow of Q-
learning is described in Figure 2(a).

The learned experience is stored in a Q-table which
contains the weight for each state-action pair. We use
S = {s1,52,...,5,} to denote the set of states and A =
{a1,as,...,a,n } the set of actions. In our case, one state s;
means a specific time interval. Adjacent states are adjacent
time intervals. For example, if the time duration of each state is
one hour and s; is 9-10am, then s;; means 10-11am and s;_1
means 8-9am. Each state has the same duration length. One
action a; means a specific waking-up frequency. It could be

10

Fixed ® Dynamic ®GT

82000
Eino :
e 500 I § g
P | S . N N m N N
[10,10] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] ([50,100] [100,100]
[SD, ED] (sigma=0.1)
10000 Fixed ® Dynamic ® GT
-ﬂc) 8000
S
© 6000
© 000
©
+ 2000 l I
= el mlll EE HE =l Bl <EE =l <EE <8

[10,10] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] [50,100] [100,100]

[SD, ED] (sigma=0.3)

(a) Total catches

w 1
Los
06
S
Soa
o02
= — - il
I [10,20] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] ([50,100] [100,100]
[SD, ED] (sigma=0.1)
2 08 N Fixed ® Dynamic B GT
gos
Goa
G o2
: N N N N
-%Omg_. = Slm Nfm <f- SHa NEm Sl= V=
I [10,10] [10,20] [10,50] [10,100] [20,20] [20,50] [20,100] [50,50] [50,100] [100,100]

[SD, ED] (sigma=0.3)

(b) The ratio of total catches to total waking-up time units

Fig. 3. Simulation results. There are two simulation settings. One contains 100 events sampled from [p = 12,0 = 0.1] and 100 events sampled from
[= 15,0 = 0.1]. The other contains 100 events sampled from [= 12,0 = 0.3] and 100 events sampled from [p = 15,0 = 0.3]. SD is state duration

and ED is event duration. The time unit is one second.

waking up MCU once every minute, or once every 10 minutes
or once every hour, etc. Both the state duration and the waking-
up frequency for each action are application-specific.

Q-learning is a table-based reinforcement learning algo-
rithm. Q-table contains the weight of each state-action pair
and these weights are updated at each step by calculating the
reward gained from each step. One step corresponds to one
state. The update equation of Q-table is as follows:

Qij = Qij + a[Ri; + maz (Qip1k) —Qyl (D)
where (Q;; denotes the weight of the state-action pair of
(si,a;); R;; denotes the reward gained in state s; by taking
action a;; o denotes learning rate; v denotes discount rate;
maz calculates the maximum expected future reward given
the new state and all possible actions at that new state.
Figure 2(b) shows the initialized Q-table with zeros which
can also be initialized by training on an off-line dataset.
Training a Q-table using off-line dataset before deployment
saves the time spent in learning the event pattern from scratch.

B. Online Adaptive Ability

In a real life scenario, the event pattern is usually not fixed,
and it may change as time goes by. For example, in the
application of wildlife watering monitoring, wildlife in the
desert comes to water site to drink water, and our system wants
to take as many pictures containing target wildlife as possible.
However, wildlife’s watering habit varies in different seasons.
The system must be capable of online learning to keep the
Q-table updated to the real-time environment.

In Q-learning, there is a parameter called e related to action-
taking decisions. At the beginning of each step, a random
number 7 is generated and compared to €. If > € the system
takes an action based on Q-table. Otherwise, a random action
is taken. The value of € keeps decreasing to a small number
as Q-table is more and more well-trained. Once € decreases
to its minimum value, the system is well-trained, and the Q-
table stops updating. Larger € value means the system explores
more and smaller e value means the system exploits more. To

11

implant online learning ability to SpotON we need to reset this
e regularly. As for how often we should reset e, it depends on
the application.

IV. EVALUATION

We have conducted computer simulations to evaluate the
performance of SpotON. Our simulations are based on a
python package called gym which is a toolkit for developing
and comparing reinforcement learning algorithms [2]. The
most important parameters are as follows:

e state duration (SD): how long one state lasts;
event duration (ED): how long one event lasts;
energy bank capacity (EBCap): how much energy the
storage capacitor can save at maximum;
event distribution parameters (u, 0): we assume the event
obeys normal distribution. p and o are the mean value
and the standard deviation respectively.

To simplify the simulation, we assume our system har-
vests solar power, the time unit is one second and the total
simulation time is one day. The energy consumption rate is
10 times as the energy storage rate, which means 10-second
charging can support 1-second discharging. Solar energy is
only harvestable during the daytime, e.g. from 6 am to 8§ pm.
We set the EBCap to 2-hour continuously charging, which
means the capacitor can at maximum store energy harvested
from two hours.

If the system wakes up at one time unit and there is an
event happening, then we consider this time unit a catch or a
positive waking-up. The number of catches or positive waking-
ups is one of our evaluation metrics, and it means how many
time units the system wakes up when there is an event. The
ratio of positive waking-ups to total waking-ups is our second
metric. The reason why we use these two evaluation metrics
is that in real life scenarios we care more about if the MCU
wakes up at the event-happening moment, which is related to
the efficiency of energy usage. Taking the wildlife watering as
an example, the system wakes up and takes a picture of the
water site. The more pictures that capture an animal, the more

efficiently the system uses the harvested energy. Energy used
for waking up without capturing an event is wasted. There is a
negative reward for waking up without a catch and a positive
reward for waking up with a catch.

We compare SpotON (Dynamic) with the other two sys-
tems, the ground truth (GT) and the fixed system (Fixed). The
ground truth system is powered by a battery so it can catch
all time units when there is an event, and its total waking-ups
equal to the length of the simulation which is 24 hours in
our case. The Fixed system is the existing energy harvesting
system which wakes up after the capacitor is fully charged
and uses up all energy immediately.

Figure 3(a) demonstrates that our SpotON has more catches
than the fixed system. Especially in the case of o 0.1,
SpotON has around 5 times as many event catches as the fixed
system. Compared to the ground truth, there are still a lot of
missed time units where there are events. But remember our
goal is to make as many positive waking-ups as possible, rather
than capturing all event-happening time units. We also notice
that SpotON has better performance for event distribution with
smaller standard deviation. The reason is that smaller standard
deviation means the data are more converged and it is easier
for Q-learning to learn the event pattern.

TABLE I
AVERAGED RESULT FROM ALL SIMULATION RESULTS

Number of catches The ratio of positive waking-ups
0=01| 0=03 | c=0.1 o=0.3
Fixed 256 515 6.5% 13.2%
Dynamic 1225 1114 79.6% 53.4%
GT 2855 5848 3.3% 6.8%

Figure 3(b) shows the ratio of positive waking-ups to total
waking-ups. SpotON significantly outperforms the other two
systems. The highest ratio is 0.92 which means in that case
92% of SpotON’s waking-ups happen when there is an event.
The fixed system has only 10% positive waking-ups on average
which means 90% of harvested energy is wasted in useless
waking-ups. As expected, the ground truth system has the
lowest energy usage efficiency because it is powered up all
the time. Table I shows the averaged result from all results.

V. FUTURE PLAN

Our future work includes tuning the parameters of the Q-
learning algorithm, considering the time, energy, and complex-
ity of event detection algorithms, and implementation of the
system on a real hardware.

e Algorithm parameters: In the preliminary experiments,
we find that there are still opportunities for improvements.
In some settings, there are unused energy in the capacitor
at the end of the experiment. Currently, we use the same
reward parameters for all simulations. Tuning the reward
parameter in a more fine-grained way can make the
system use up all harvested energy and perform better.
Generalization: currently, we assume that the events are
easily detected. For example, if we consider loud noises
as events of interest, we only need to use an audio sensor
and compare the signal amplitude to a threshold. If it is

12

higher than the threshold, we consider it as an event.
However, to generalize SpotON to other applications,
we have to consider the energy consumption due to
executing the recognition algorithm, e.g. image-based
event detection where image recognition is needed to
figure out if a picture contains an object or an event we
are interested in and this consumes much more energy
than merely sensing audio signals.

Hardware: one crucial prerequisite for SpotON is that
we must have a large and dynamic storage capacitor. For
example, we want to monitor wildlife watering, and we
assume that the animals come to the water site mostly
in the afternoon. Our system gradually learns to wake
up more frequently in the afternoon and sleeps more
in the morning. The energy harvested in the morning
must be stored somewhere and then be used to wake up
MCU more frequently in the afternoon. Thus, saving such
energy would require a variant design of Capybara [8]
that can dynamically change the storage capacitance. This
requires a complete energy management unit facilitated
by specialized hardware and software design.

In summary, SpotON opens a new way for energy au-
tonomous systems to detect events actively by waking up just
in time and by adapting its internal model of the environment
as the real-world environment changes. We also plan to
implement SpotON on different energy harvesting platforms.

ACKNOWLEDGMENT
This paper was supported, in part, by NSF grants CNS-
1816213 and CNS-1704469.

REFERENCES
[1]

Diving deeper into reinforcement learning with g-learning.
https://medium.freecodecamp.org/diving-deeper-into-reinforcement-
learning-with-q-learning-c18d0db58efe. Accessed: 2019-02-20.
Gym toolkit. https://gym.openai.com/. Accessed: 2019-02-20.
Smart dust - wikipedia. https://en.wikipedia.org/wiki/Smartdust.
cessed: 2019-02-20.

M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: an energy-
aware runtime for computational rfid. In Proc. USENIX NSDI, pages
197-210, 2011.

B. Campbell, M. Clark, S. DeBruin, B. Ghena, N. Jackson, Y.-S. Kuo,
and P. Dutta. perpetual sensing for the built environment. /[EEE Pervasive
Computing, 15(4):45-55, 2016.

B. Campbell and P. Dutta. An energy-harvesting sensor architecture
and toolkit for building monitoring and event detection. In Proceedings
of the Ist ACM Conference on Embedded Systems for Energy-Efficient
Buildings, pages 100-109. ACM, 2014.

A. Colin and B. Lucia. Chain: tasks and channels for reliable intermittent
programs. ACM SIGPLAN Notices, 51(10):514-530, 2016.

A. Colin, E. Ruppel, and B. Lucia. A reconfigurable energy storage
architecture for energy-harvesting devices. In Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 767-781. ACM,
2018.

M. E. Harmon and S. S. Harmon. Reinforcement learning: A tutorial.
Technical report, WRIGHT LAB WRIGHT-PATTERSON AFB OH,
1997.

J. Hester, K. Storer, and J. Sorber. Timely execution on intermittently
powered batteryless sensors. In Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems, page 17. ACM, 2017.

T. Xiang, Z. Chi, F. Li, J. Luo, L. Tang, L. Zhao, and Y. Yang. Powering
indoor sensing with airflows: a trinity of energy harvesting, synchronous
duty-cycling, and sensing. In Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems, page 16. ACM, 2013.

[2]

[3] Ac-

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

Work-in-Progress: A Unified Runtime Framework
for Weakly-hard Real-time Systems

Hyunjong Choi and Hyoseung Kim
University of California, Riverside
hchoi036 @ucr.edu, hyoseung@ucr.edu

Abstract—A weakly-hard real-time system is a system that
can tolerate a bounded number of timing violations. There have
been various assumptions made by prior work on handling
deadline-missed instances (jobs) of a task in weakly-hard sys-
tems, e.g., terminate it immediately or continue to execute it
even after its deadline is missed. However, no prior work has
presented a system-level framework to support such options and
to quantitatively assess their effects on schedulability. In this
paper, we present a unified runtime framework to execute weakly-
hard tasks with the four major deadline-miss handling options:
job abort, delayed completion, job pre-skip, and job post-skip.
Our work is applicable to any type of operating systems that
support preemptive scheduling with task control blocks. We have
implemented our framework in the Linux platform running on
Raspberry Pi. We evaluate the performance of each scheme and
measure spatial and computational overheads.

I. INTRODUCTION

Weakly-hard real-time systems have been studied to capture
the occasional miss of deadlines that a system can tolerate. The
common notation of a weakly-hard constraint is in the (m, K)
form, which specifies that at most m instances can miss their
deadlines among K consecutive instances. A certain level of
quality of service can be guaranteed, provided that such a
timing violation happens in a known and predictable way.

In the literature of weakly-hard systems, there are various
assumptions on how to handle a task’s instance (job) when
it has missed or is likely to miss the deadline. A job may
be terminated immediately when it misses its deadline, i.e.,
job abort. It may continue to execute to completion even if its
deadline has passed, i.e., delayed completion. A prediction can
be made such that only the jobs that are expected to complete
by their deadlines are executed, i.e., job pre-skip. One may
also decide to skip the next job if the current job is executing
over the next period, i.e., job post-skip. Table I summarizes
the classifications of previous weakly-hard studies based on
the above assumptions.

Prior work, however, has not considered a runtime frame-
work to instantiate various deadline-miss handling options
and has not provided any comparative analysis among those
assumptions. Besides, an implementation cost, which is one of
the criteria to evaluate applicability in practical systems, has
not been thoroughly studied.

This paper presents our work-in-progress effort on develop-
ing a runtime framework for weakly-hard real-time systems.
Our framework includes systems primitives to support the
four aforementioned deadline-miss handling schemes, i.e.,

TABLE I: Weakly-hard studies based on the job handlings

Prior work
[61%, [71%, [3]
(51, [8]

(61, [71*

Handling scheme
Job abort

Delayed completion

Job pre-skip

*: multiple handling schemes are employed.

job abort, delayed completion, job pre-skip, and job post-
skip. The current version of our framework focuses on task-
level fixed-priority scheduling and has been prototyped in the
Linux kernel on Raspberry Pi 3. The proposed framework
design approaches can also be applied to any operating system
(OS) that uses preemptive task scheduling with task control
blocks. We expect that our framework can serve as a basis to
build real-time applications with weakly-hard constraints and
facilitates the comparison of different weakly-hard schemes on
a real platform.

II. RELATED WORK

Many weakly-hard studies have assumed the use of the
delayed completion scheme, in which a job continues to run
although it exceeds its deadline. In overloaded systems, the
work in [5] bounds temporary violations of deadlines by using
typical worst-case analysis (TWCA) and job arrival curves.
The work in [8] also uses the delayed completion scheme and
focuses on a taskset with utilization less than or equal to 1.

In [3], the author assumes that the execution of a job
is aborted if it does not finish within its deadline. This
assumption is to ensure that a delayed job from the previous
period does not affect the execution of the next released job.
With this assumption, tasksets with utilization more than 1 can
be schedulable, but the author has not provided details on the
safe recovery of task states after the job abortion.

To manage the overloaded situations, some prior work [6, 7]
has considered both the job abort and the job pre-skip schemes.
Ramanathan [7] classified jobs into mandatory and optional
ones such that only the mandatory jobs are guaranteed to be
schedulable in order to reduce the overall loads of the system.
The work in [6] also used similar classification approaches,
whereas the optional jobs may be executed by checking its
eligibility based on slack or predetermined patterns. Recently,
Zhishan et al. [4] proposed a new scheme for mixed-criticality
systems that drops jobs while guaranteeing the predefined level
of performance degradation of low-criticality tasks.

13

III. SYSTEM MODEL

Our framework primarily considers task-level fixed-priority
preemptive scheduling in a uniprocessor system. For the task
model, we assume periodic tasks with weakly-hard constraints.

Task model. Task 7; is represented as follows:
T = (Oi7 Dia Ti7 (mi7 K’L))

o C;: The execution time of each job of a task ;.

D;: The relative deadline of each job of 7; (D; < T3).

T;: The period of 7;.

(my, K;): The weakly-hard constraints of 7; (m; < K;). If
7; is a hard real-time task, m; = 0 and K; = 1.

The j-th job of a task 7; is denoted as J; ;.

Performance metrics. To evaluate the performance of
weakly-hard schedulers with different deadline-miss handling
schemes, we define the following metrics.

Def. 1. The effective utilization of a task 7;, Uf(t), measures
the ratio of the time used for jobs that have met their deadlines
during a given time interval t. Hence, U (t) = S2Mi ywhere

M; is the number of jobs completed by deadline during t.

The total effective utilization, U¢(t), is thus the sum of the
effective utilization of all tasks in the system during a given
time interval ¢, i.e., U%(t) = Zfil Uf¢(t), where N is the
number of tasks and U¢(¢) cannot exceed 1.

Def. 2. The runtime utilization of a task ;, U] (t), measures
the ratio of the time used for a task that has occupied the
processor during a given time t. Hence, U] (t) = %, where

R;(t) is the processor time used by a task T; during t.

The total runtime utilization, U", is the sum of the runtime
utilization of all tasks in the system during time ¢, i.e., U" () =
Zf\;l U!(t), and it cannot exceed 1. Also, U"(t) > U®(t).

IV. RUNTIME FRAMEWORK

This section presents our framework to support the four
deadline-miss handling schemes mentioned in Section I: job
abort, delayed completion, job pre-skip and job post-skip. We
begin with a fundamental runtime mechanism for periodic
execution of tasks, and then present the detailed design of
each scheme based on it.

A. Periodic execution support

Fig. 1 illustrates the overview of our runtime mechanism
for periodic task execution, which is organized as user space
and kernel space. In the user space, a task can request specific
actions to the OS kernel as needed, e.g., registering a task as a
real-time task or putting it in sleep mode when the current job
finishes execution. In the kernel space, our runtime consists of
four core modules: initializer, scheduler, timer, and complete
sequence. We detail the functions of each module as follows:

o Initializer: The system registers a task as a periodic real-
time task by assigning real-time priority, and creating re-
lease and deadline timers for this task in A).

Legend { § Systemcall 4 Awakeatask "W Sequence in user-space mmp Execution of a task

Create a thread

/—> Periodic task
. Repeat
\ Call to register as a real-

time task (SYSCALL) Begin [T Job complete
Lu - (SYSCALL)
U P { [
 Kernel-sp i/ [Ny
@ Initializer © Timer : release & deadline ® Complete sequence

- Interrupt at every cycle of a
periodic task

- Awake a sleeping task

- Stamp a release time (profiling)

- Assign a real time priority
- Set a task as a real-time task
- Register a timer

® Schedul

[- Trace tasks on the resource (profiling)]

- Put a task sleep
- Record a complete time (profiling)
- Wait until the next timer interrupt

Fig. 1: Runtime mechanism for periodic task execution

e Scheduler: In (B), a scheduler determines the readiness of
periodic tasks based on the deadline-miss handling scheme
in use, and records task execution traces and resource usage.

o Timer: There are two timers involved for each periodic task.
First, the release timer ((O) fires at the beginning of each
period of the task. The deadline timer fires when the task has
not completed its job execution and is still in running mode,
different sequences are followed based on the deadline-miss
handling used.

e Job completion sequence.: Once the task finishes its job
execution, it makes a job_complete system call to the
kernel ((D)). The system then puts the task into sleep mode
so that it waits until the next job is released by the timer.

Note that this mechanism shown in Fig. 1 is generally appli-
cable to most OSs supporting preemptive task scheduling.

B. Job abort

In this scheme, a job is terminated immediately if it misses
its deadline. This scheme can be beneficial in the case where
a deadline-missed job will no longer need to run as the
remainder of its execution does not yield any gain.

However, the termination of a running job is not trivial in
the implementation. When a task misses its deadline, it needs
to be rolled back to its previous state so that its next job can
safely and correctly execute in the next period. This rollback
mechanism is typically done by creating a checkpoint [1].

Task rollback. There are two types of rollback approaches
we may consider. The first is task-level checkpointing, where
each task creates its own checkpoints as part of execution and
implements a handler to recover from the stored checkpoints.
The second approach is system-level checkpointing, where the
OS or middleware creates each task’s checkpoint, e.g., by
storing all memory pages recently modified, and recovers the
task state when needed. In this work, we focus on the task-
level approach due to its lower overhead that can be done in
three steps as follows:

« Step 1. Store a checkpoint: Since our rollback technique
is achieved in a task-level, a checkpoint is stored at the
beginning of a task execution. We used sigset jmp in the
standard C library to save a program counter (PC) and a
stack pointer (SP)

o Step 2. Notify a deadline miss to the user space: If the
job has missed its deadline, the kernel notifies the task by
sending a signal.

14

« Step 3. Recover from the checkpoint: By the signal
generated in Step 2, the signal handler of the task is
triggered so that the PC and SP are recovered from the
stored checkpoint by using siglongjmp.

TABLE II: Taskset 1

Tasks | T (Period) [ms] | C (WCET) [ms] | (m, K) | Priority
1 65 35 2,4) High
- 125 35 (24) | Middle
3 200 35 2,4) Low

Example. We have implemented this scheme in the Linux
kernel v4.9.76 running on Raspberry Pi 3, and tested the
operation of the job abort scheme by running a taskset given
in Table II. In Fig. 2, 7; and 75 are always schedulable while
J3.1 and J3 4 of Task 3 do not meet their deadlines.

0f Moo o'y

_} 3, Abort IJ(II)
Ty 31 D

T

h bd ho bBd b Bi
hhﬁhhhﬁhhhﬁhhh%

0

Abort a job TJS 5

Dl\D ﬂ

Tlme[su] = Execuuon of a_]ob

Fig. 2: Job abort

4 Rsled\s u_]ob Complete a job +Ab(m dJ()b

C. Delayed completion

The delayed completion scheme allows a deadline-missed
job to continue to run until it completes. This scheme is
effective when the quality of service can be improved by the
execution of remainder of a deadline-missed job.

Under this scheme, however, if a job continues to run over
its deadline, the next released job is delayed by the execution
of the previous job. Thus, this scheme does not get benefit
from the weakly-hard concept in overloaded situations, i.e.,
taskset with total utilization is more than 1.

In order to realize the scheme, the task is put in sleep mode
only when the job just completed is the latest released job.
This is checked in by the job completion sequence module
(@ in Fig. 1).

Example. As shown in Fig. 3, deadline-missed jobs are
running until it completes its execution under this scheme.

' Dleudu)mpl?mn + Delneﬁdu)mpletum 1
g ogdhog 0 DI“D ﬂ

‘oiid bd bobd bi b
;mhhhhbhhhhhhhh%

[Execution of a job 4 Release a job Complete a job

Fig. 3: Delayed completion

D. Job pre-skip

The job pre-skip scheme determines whether to execute a
job or not at its release time (the release timer (C) of Fig. 1).
A decision for the execution can be made in either online or
offline. In case of the online approach, the system can use the
slack time of a task at the moment of its job release. In the
offline approach, a predetermined execution pattern is used,
e.g., 1010 where 1 means execution and 0 means skip.

However, there are two major drawbacks. The first is the
runtime overhead which may be high because the scheduler
needs to check the slack time (online) for job execution.
Moreover, especially when the average-case execution time is
much lower than the WCET, the scheduler may unnecessarily
skip jobs, which results in processor underutilization.

In this scheme, the release timer (©) is the major module
to be modified to enable the pre-skip scheme. The overall
sequence of the modified release timer is depicted in Fig. 4.

ext release pattern = 1

No | (pre_skip_flag = 0)

’ Timer ISR ‘

Online/Offline

No
(pre_skip_fla

If online

=0)

Do not wake up a task ‘

Yes (pre_skip_flag = 1)

\

’ Wake up a task |

!

’ Release the next instance ‘

Yes (pre_skip_flag = 1)

Fig. 4: Timer sequence in job pre-skip scheme

Example. Under the offline approach, a predefined pattern of
1010 is applied to all tasks so that every other instance is
executed as depicted in Fig. 5. On the other hand, under the
online approach, jobs J3 o, J3 3, and J3 5 are executed based
on slack calculation.

B i, Jmf #J“ 5t 1

3

T

i d b d b !
TIHHHHHOHH’

7
4 Release a job

. Time[sec] [Execution of a job Complete d]()b

Fig. 5: Job pre-skip (pattern)

E. Job post-skip

In this scheme, the scheduler allows a deadline-missed job
(released at j'*) continue to run, but it always skips the next
released job (released at j 4 1) and keeps track of the index
of the job. Under this scheme, jobs are discarded occasionally,
resulting in degradation of the quality of service of a system.
Example. Under the job post-skip scheme, Js 5 and J3 5 are
skipped because the previous jobs have violated their deadlines
and affected the execution of the next released jobs, as shown
in Fig. 6.

o it —
0n (1 O T11

“oild bd Bd Bd B Bi
hhhhhhhhhhhhhh%

0 0.1 0.2 0.3 0.4
Time[sec]

. 31 — Post-skip ﬂ

e 1, T‘,,n.»—r'l’ns!-skip Hy,

= erculmn ofajob + Release a_]ob Complele a]ob

Fig. 6: Job post-skip

V. EVALUATION

In this section, we evaluate the proposed framework in
the Linux kernel running on Raspberry Pi 3 (Quad Cortex

A53 @ 1.2GHz). The evaluation consists of two parts: the
measurement of computational overheads and the case study.
Overheads. For the computational overhead of our framework,
it is worth noting that the delayed completion and post-skip
schemes do not cause any additional cost other than those
for the periodic execution mechanism shown in Section IV-A.
However, under the job abort and job pre-skip schemes, there
are the following four major sequences that can cause extra
runtime overhead:

e sigset jmp (job abort): the cost in the user space to create
a checkpoint

e siglongjmp (job abort): the cost in the kernel space to
send a signal to the user-space task

o Slack (job pre-skip): the cost of calculation of the slack

o Pattern (job pre-skip): a transition cost of pointing to the
next element in the pattern

= 9.7920 EMean|

2 EMax

P 6,078 5.6770 i

=] i

§ 6980

5 205200 7180 25000

o 0.21 3'. 1040
setjmp siglongjmp Slack time Pattern

Overheads

Fig. 7: Overheads of taskset
Fig. 7 summarizes the overhead measurement on Raspberry Pi
3. As can be seen, siglongjmp for the rollback mechanism
is the most costly operation. However, they are acceptably
small in ps units, compared to the WCET and periods typically
denoted in ms units.
Case study. For case study, we have selected a taskset given
in Table III where its total utilization is higher than 1.

TABLE III: Taskset 2 [6]

Tasks | T (Period) [ms] | C (WCET) [ms] | Skip parameter
1 6 1 2
™ 7 4 2
3 19 5 2

This taskset is not schedulable under any conventional fixed-
priority scheduler. However, if the RM-RTO! algorithm of [6]
is used, the job execution pattern of each task is determined
as either 10 or 01 and this pattern can be realized by the job-
skip scheme. Fig. 8 shows the result of dynamic failures® of

x10*

2

; n—— 31577 31577 T 25563]
Sob |
s’ 15035

5

3

Zo 0

Z Abort Delayed completion Pre-skip(slack) Pre-skip(pattern) Post-skip

Fig. 8: Dynamic failures of 73 (total 31578 jobs released)
73. As can be seen, the number of dynamic failures under the
pre-skip scheme (pattern) is zero, meaning that 73 satisfies its
weakly-hard constraint. However, all the other schemes suffer
from a high number of dynamic failures.

IRM-RTO stands for Rate Monotonic Red Task Only.
2A task experiences more than m deadline misses in a window of K jobs.

Fig. 9 shows the observed effective and runtime utilization
values. The abort scheme shows the highest effective utiliza-
tion and the pre-skip scheme (pattern) has the lowest. This
is because the pattern-based scheduling pessimistically skips
the execution of higher-priority tasks even if there is enough
processor time to use.

: ‘1‘0000 MW Effective util |

=

S

E | 0.9896 CRuntime util () 00>~
Sosk O 0.7453 0.74850.7485 0.7713 -
=)

£06 0.5064 0.5064 I
o4 -
£

§ 0.2 =
E—: 0 I I I I I

Abort Delayed completion Pre-skip(slack) Pre-skip(pattern) Post-skip

Handling scheme

Fig. 9: Total effective and runtime utilization

VI. CONCLUSION

We proposed a unified runtime framework for multiple
deadline-miss handling schemes in weakly-hard real-time sys-
tems. The framework has been implemented in the Linux
kernel on Raspberry Pi with very low overhead, but it is
easily applicable to other OSs using fixed-priority preemp-
tive schedulers. Experimental results show that, depending
on the deadline-miss handling scheme used, the number of
violations of weakly-hard constraints as well as utilization
metrics can vary significantly for the same taskset and a
different trend can be observed for other tasksets. These
results pave an interesting research direction to investigating
weakly-hard tasks under diverse experimental conditions and
new analysis techniques. In our current implementation, all
tasks in the system are governed by the same deadline-miss
handling scheme. This is in accordance with the assumptions
of prior work, but we expect that allowing each task to have a
different handling scheme would increase resource efficiency
and design flexibility. Furthermore, our framework can be
extended beyond task-level fixed-priority scheduling, e.g., a
job-class-level fixed-priority scheduler [2] to be presented in
RTAS 2019. It can also be used as an assessment tool for the
issues that have not studied much in the weakly-hard context
such as an inter-task dependency, shared resources, multicore
systems, and temporal interference from contention in cache
and main memory.

REFERENCES

[1] M. Asberg et al. Resource sharing using the rollback mechanism in
hierarchically scheduled real-time open systems. In /EEE RTAS, 2013.

[2] H. Choi, H. Kim, and Q. Zhu. Job-Class-Level fixed priority scheduling
of weakly-hard real-time systems. In /EEE RTAS, 2019.

[3] J. Goossens. (m, k)-firm constraints and DBP scheduling: impact of the
initial k-sequence and exact schedulability test. 2008.

[4] Z. Guo et al. Uniprocessor mixed-criticality scheduling with graceful
degradation by completion rate. In /EEE RTSS, 2018.

[5] Z. A. H. Hammadeh et al. Budgeting under-specified tasks for weakly-
hard real-time systems. In ECRTS, 2017.

[6] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for
overloaded systems that allow skips. In RTSS, 1995.

[7] P. Ramanathan. Overload management in real-time control applications
using (m, k)-firm guarantee. I[EEE Trans. on Par and Dist. Syst.,
10(6):549-559, Jun 1999.

[8] Y. Sun and M. D. Natale. Weakly hard schedulability analysis for fixed
priority scheduling of periodic real-time tasks. ACM TECS, 2017.

1p

Memory Mapping Analysis for Automotive Systems

Robert Hottger, Lukas Krawczyk, Burkhard Igel

IDIAL Institute

Dortmund University of Applied Sciences and Arts

Dortmund, Germany

{robert.hoettger, lukas.krawczyk, igel} @fh-dortmund.de

Abstract—While embedded real time software is predomi-
nantly analyzed regarding task response times, memory mapping
is often assumed to be static and is either defined by the
system designer or by default set to affinity locations of software
components mainly working with the respective memory.

This paper’s work analyses memory mapping from several
viewpoints and proposes solutions to mitigate temporal costs
introduced by accessing data distributed across NUMA architec-
tures. Therefore, event chains, response times, activation patterns,
contention, as well as a variety of hardware properties such as
memory type, memory size, memory access type, and memory
affinities are taken into account. Evolutionary Algorithms, Con-
straint Programming, and a dedicated heuristic are outlined that
minimize costs influenced by the data to memory mapping.

Additionally, label mapping costs are analyzed regarding ECU
networks consisting of buses, hardware hierarchies, and arbitrary
connections of ports and hardware entities. This analysis is
accompanied with an assessment of typical domain related formal
timing verification methods.

It is expected that the presented label mapping solutions sig-
nificantly reduce overheads produced by network communication
as well as contention effects of memory accesses.

Index Terms—AMALTHEA, APP4MC, AUTOSAR, Memory
Mapping, Automotive

I. INTRODUCTION

The mapping of code, constants, and shared variables affects
the timing properties of real-time systems especially in dis-
tributed, heterogeneous, and mixed-critical environments such
as the automotive domain. System designers may overlook op-
timal mapping solutions due to a variety of constraints emerg-
ing from safety, affinity, timing, reliability, fault-tolerance, and
similar demands. Since the modeling of comprehensive system
environments is common practice in the automotive indus-
try, new technologies can cope with problems automatically
without the need of manual error prone processes and address
problems on a much broader and abstract level. For example,
centralization effects can be investigated in early design phases
without the need of hardware validation, actual software
implementation, or simulation via formal model analysis.

AUTOSAR! is the major architecture used by car manufac-
turers and different tier suppliers in the automotive industry.
AMALTHEA? comes with the open source APPAMC? plat-
form and is an AUTOSAR compliant model that features a

! Automotive Open System Architecture www.autosar.org, accessed 01.2019
2provided by the AMALTHEA model http://eclip.se/fn, accessed 02.2019
3www.eclipse.org/app4mc, accessed 01.2019

17

Olaf Spinczyk
Embedded Software Systems
Osnabriick University
Osnabriick, Germany
olaf.spinczyk @uos.de

variety of extensions that are necessary to investigate timing,
feasibiliy as well as functional and non-functional behavior
of automotive software. Several commercial tools exist to
analyze software distribution potentials, reliability, response
time, safety, or other quality attributes from companies such
as Inchron, Symtavision, Vector and others. Memory mapping,
that is the major focus in this paper, highly influences such
quality attributes and forms a major challenge in the design
process of automotive systems.

This paper outlines challenges and solutions for mapping
memory in non uniform memory access (NUMA) architec-
tures. The distribution of data across different memories of
different types considers access types, access costs, access
rates, contention, blocking, and various hardware properties.
Finding the optimal memory mapping in general is a NP-
complete problem [8].

II. RELATED WORK

The Real-Time Calculus [12] (RTC) calculates end-to-end
delays, buffer requirements, or throughput of networked sys-
tems as a Matlab toolbox. While RTC is able to assess real-
time properties, deployment feasibility, and more, it neither
assesses nor provides adaptations to memory mapping.

Schneider [11] outlines challenges and requirements of
memory management units for automotive ECUs and investi-
gates approaches of the general purpose world regarding pro-
tection granularity, memory efficiency, and real-time behavior.
The publication clearly shows the importance and relevance of
sophisticated memory management for the automotive domain.

The PhD thesis by Kumar [8] presents the data layout prob-
lem which corresponds this paper’s label mapping problem and
presents different formulations to solve the problem are given.
However, this paper targets different optimization goals than
minimizing memory stalls, conflicting accesses, and off-chip
memory accesses.

In [4], Broquedis et al. advance the OpenMP runtime to
dynamically perform thread an memory placement to provide
dynamic load distribution under application requirements and
hardware constraints such as affinities. In contrast, this paper’s
approaches account memory utilization offline in order to
provide a static mapping which complies to the AUTOSAR
standard and consider timing and network constraints specifi-
cally.

Antony et al. [1] account various memory placements along
with access latencies and memory bandwidth assessments
on different NUMA platforms running Solaris and Linux.
Although the benchmarks do not cover specific real-time
properties, results show that local placement is not always the
best strategy and sophisticated mapping significantly improves
application performance.

Avissar et al. present in [2] a compiler based approach
to automatically partition data among memory units using
binary ILP. The used system model is close to this paper’s
model and corresponds the minimization of label mapping
costs Imc (cf. Table I). The contribution of this paper goes
beyond [2] via considering AUTOSAR related constraints,
analyzing response times, and incorporating sophisticated net-
work structures, e.g. the Controller Area Network (CAN) bus.

Along with the real-time community, there have further
been label mapping solutions along with [3], [5], and others,
however, none of those cover the specific structure given in
this paper (cf. Table I).

III. SYSTEM MODEL

According to the AUTOSAR model, software is predom-
inantly comprised by runnables grouped into tasks and label
accesses that represent access to shared or private data. Group-
ing runnables into tasks and a more detailed task model has
been covered in previous work such as [7] and reduces the
subsequently described approaches’ complexity due to lower
amounts of entities featuring combined properties. Figure 1
shows a typical constellation of an ECU subset in the auto-
motive context. The entire ECU network usually consists of

Fig. 1. ECU network example with Ports, Connections, Memories, Connec-
tionhandler, and HW Structures

significantly more ECUs but is omitted here for comprehen-
sion purposes. The same holds for detailed views of ECUs 2 —
4. The example is constructed by means of the AMALTHEA
model and consists of ports, internal and external connections,
connection handlers, memories, and computational elements
on various abstraction levels, e.g. DSPs, CPUs, GPUs, micro-
controllers, etc. Connections within a connection handler are
denoted as internal connections. Ports can be defined as
initiators or responders and can implement interfaces such
as CAN, Flexray, LIN, MOST, Ethernet, SPI, 12C, AXI,
ABH, APB, or SWR. ECUI features five memory instances

18

of four different types as well as two processors. Response
times are predominantly influenced by the access times to
different memory (e.g. global / local RAM, NVRAM, ROM,
EEPROM, Flash etc.) as well as the size, access rate, and
access type of variables (i.e. labels) that are accessed across
the platform. For instance, the processor on SOCI1 can take
between 2 and 3 cycles to access LRAMI1, whereas access to
the Flash memory cache can be 20 cycles or more. While most
of the existing research assumes static worst case memory
access costs driven by contention, blocking, and scheduling,
a sophisticated network as shown in Figure 1 comprises a
broad heterogeneous NUMA structure that needs to consider
the dynamics of protocols, connection handler acceleration
properties, access patterns, and port interfaces in order to make
memory mapping as efficient as possible.

The system model of Table I outlines properties used by
solutions presented in Section IV.

TABLE I
SYSTEM MODEL

Symbol | Description Index / Calculation
r Runnable index = n
T Task index = p, ordered by priority such that
7o is the highest priority task
d Deadline dp = deadline of task 7,
pu Processing Unit index = ¢
rm runnable to pu | rmg,; = {1 if 7n n.1ap ped (o pu;
mapping ’ 0 otherwise
m Memory index = 7
ms Memory size ms; = memory size of m;
rml Read memory la- | rml; ; = rml between pu; and m;
tency
wml Write memory la- | wml; ; = wml between pu; and m;
tency
l Label index = k
ls Label size s, = label size of [}
a Activation an = activation rate (period) of 7y,
ap = activation of task 7,
rl Read labels rly, = read labels of r,
wl Written labels wl,, = written labels of r,,
Im L.abel to m map- | Imy ; = {(1] ;ft}il;vl'zfzzped to mj;
ping]
Imc Label map. cost see Eq. 1; Imcy ; = cumulated costs
for mapping [; to memory m;
C CAN message | index of CAN messages = c,
transmission time | see Eq. 4
R Response time see Eq. 5, Eq. 7
w Queuing delay see Eq. 6

Each AUTOSAR runnable refers to an activation and con-
tains label write or read accesses to arbitrary labels. Conse-
quently, the total label mapping cost is derived from the binary
label mapping Imy, ;, activation rates a,,, read and written la-
bels rl,, wl,, runnable mapping rm (to processing units), and
read as well as write latencies between processing units and
memories wml, rml. The latter is of major importance, since
those latencies comprise sophisticated networks as shown in
Figure 1.

The overall label mapping cost calculation is given in Eq. 1

and defines one of the mapping process’ optimization goals.

Ilmec = Z Imey, ;
k
:Z <Z (an - rml; ;) +Z(an ~wmli7j)> M
n rly, wly,
with rmy, ; =1

In order to derive wml; ; and rml; ;, i.e. write and read
latency values, ports, connections, interfaces, bit width of
connections, label sizes, and protocol properties must be
considered. For instance, when considering the CAN protocol,
worst case latencies must be derived for the messages passed
between ECUs. Since tasks can have deadlines greater than
their periods [10], the worst case release times of a task
may be shifted to their next period. Typically, the start of
transmitting a CAN message is likely to occur at the end of a
tasks execution by e.g. following the implicit communication
paradigm. Accordingly, we need to assume that the release
times of CAN messages are shifted as well. As a result, we
consider the level-c busy period for CAN messages, i.e. the
maximum consecutive amount of time the CAN network is
occupied by messages that have an equal or greater priority
then message c.

An analytic approach for determining worst case response
times in CAN networks in consideration of busy-periods is
presented in [9]. After ensuring that the bus utilization is less

than one (3. < 1), they determine the duration . of a
level-c busy period by the recurrence relation in Eq. 2.

> F*‘]w C,

Yve€hp(c)Uc v

The minimal interval between two occurrences of the v-th
higher priority (hp) message is represented by 7, and equals
the sending tasks period for periodically sent messages resp.
their minimal inter-arrival time in sporadic send messages.
As CAN messages are naturally non-preemptive, the blocking
time B, introduced by lower priority (Ip) messages on the
channel needs to be considered. Since at most one lower
priority message can block the channel, the blocking time
equals the highest transmission time C,. among all lower
priority messages.

Eq. 3 defines the payload of a CAN message s. as the sum
of label sizes being exchanged and consequently defines the
communication.

>

k:lg€(rlaAwly)

Ce
T,

te = Bc + (2)

Se = s

3)

with ¢ # 7 for rm

n,t’

Tmﬁ’;

The payload calculation is accompanied by the assumption that
the communicating entities (here, r; and 7;) are mapped to
different processing units (pu;, pu;, i # 1) that are connected
through a CAN network.

The maximum transmission time C. depends on the iden-
tifier format and is derived as in Eq. 4, with 73;; being the

19

transmission time for a single bit. Usually, 74;; can be derived
from the CAN network’s baud rate. The constants are obtained
from CAN properties such as bit stuffing that includes CRC
bits, error frames, as well as control, arbitration and data fields.
A more detailed outline can be found at [9].

{

The worst-case response time R.(q) for the g-th instance
of a message c is obtained as stated in Eq. 5 by summing
up the queuing jitter J., the queuing delay W.(q), and the
transmission time C,. Subtracting ¢7,., with T, being the
period of message c results in the relative worst case response
time for the g-th instance. The queuing jitter .J. is derived from
hardware profiling. An analytical jitter derivation is omitted
here.

for 11-bit identifiers
for 29-bit identifiers

(55 + 10s..) Thit
(80 + 10s..) bt

C

RC(Q) =Jc+ WC(Q) —qT. + C.)
The queuing delay W.(q) for the g-th instance of ¢ is
determined using the recurrence relation in Eq. 6.

|

Finally, the worst case response time of a message c is
determined by reducing the individual values R.(q) for all
instances to their maximum value.

In addition to the metrics of Table I that define the quality
and responsiveness of automotive memory mapping, offload
copy operations can be further incorporated for advanced com-
puting environments using accelerators or GPUs. Therefore,
label read operations must be extended with additional write
operations and vise versa. Such consideration forms a potential
extension of this work’s current state.

Wc + Jv + Thit

Wc(‘]) = B.+qC. + Z T

Yvehp(c)

W Cy (0

Another important assumption for calculating response
times as well as event chain latencies across a networked
environment is the incorporation of extended instruction sets
respectively ticks in terms of AMALTHEA 0.9.3. For instance,
the amount of ticks required for executing a complex image
processing application significantly differs when being exe-
cuted on a GPU vs CPU. Therefore, this paper uses traditional
response time analysis for mixed preemptive fixed priority
tasks using recurrence relation [10] (based on Eq. 7) that
incorporates mapping decisions and varying instruction sets

correspondingly.
]

Ry=Cp+ >
q€hp(p)
Here, C}, and C,; provide different values in regard to the
processing unit they are mapped to. Additionally, the worst
case response times are validated to be smaller than the task
deadlines Vp : R, < d,.

Ry
T (7)

q

IV. MEMORY MAPPING

The label mapping has been implemented as a heuristic, an
evolutionary algorithm (EA), and a constraint programming
(CP) approach. The heuristic is a straight forward greedy
approach that maps labels ordered by size to the memory
featuring the lowest Imcy,; value. If a memory is full, the
memory with the next lowest lmcy, ; value is chosen.

The EA uses the jenetics java library*. The fitness function
is presented in Eq. 8 where S denotes a chromosome, R,
the mean task response time, and R, the mean CAN message
response time. Additionally, each fitness is accompanied by
Eq. 9 in order to ensure the memory size constraint. The
different entities of the fitness function require additional
factors in order to equally influence the overall fitness.

VS : fs' = Zlmck,j(S) "‘FE(S) +E(S)
l

Z s, < ms;

L:lmy j=1

®)

©))

ij :

The CP approach to the label mapping problem uses the
choco library® and consists of a boolean variable matrix for
the label to memory mapping (i.e. a binary Im representation),
the cost variable array Imcy, ;, as well as the memory load
variable array ml, and the tc variable. All these variables are
distinct for each solution. Solutions are required to satisfy the
following five constraints. A sum constraint on each array
of the [m matrix ensures that each label is exactly mapped
once. A scalar constraint across Im and Imcy ; ensures that
the mapping costs are derived from the label mapping and
according label access costs for each label based on Eq. 1. A
sum constraint over [mcy ; calculates Imc. Finally, a scalar
constraint calculates the sum of label sizes assigned to a
memory and ensures along an arithmetical constraint that this
sum does not exceed the memory size. The latter is applied to
each memory. Alternatively, the latter arithmetical constraint
can be replaced by a binpacking constraint.

V. RESULTS AND ASSESSMENTS

Given the above mentioned methodologies to map labels to
memory of the hardware, results are assessed by

1))

2)

3)

4)

the average task response time R,

the network load nl =, C,, and

the total label access cost Imc

the cumulated latencies of event chains

[= Y e WCL,. with WCL denoting the worst case
latency of an event chain considering the label mapping.

The description of event chains and their latency calculation is
given in [6]. While the CAN response time analysis has been
implemented as well as the rudimental evolutionary and con-
straint programming approaches, some integration work (es-
pecially according to minimizing WC'L,,) is still necessary in
order to combine the label mapping with temporal coherency

“http://jenetics.io, accessed 02.2019
Shttp://www.choco-solver.org, accessed 02.2019

20

considerations. First results show that the EA generates better
results than the heuristic and the CP approach. Although
the CP approach has powerful paradigms to model various
constraints, its implementation requires careful analysis in
order to keep the resolution time appropriate. Measured results
(plots) of the approaches are expected soon.

VI. CONCLUSION

The presented description of typical memory mapping con-
straints under a variety of automotive specific hardware proper-
ties as well as the consideration of CAN network properties as
an example, provides valuable insights into modern memory
mapping for networked, heterogeneous, mixed-critical, real-
time systems. Although results are not available yet, the formal
outline and description of the approaches present important
characteristics and foundations for memory mapping analysis
in the automotive domain.

REFERENCES

[1] Joseph Antony, Pete P. Janes, and Alistair P. Rendell. Exploring
Thread and Memory Placement on NUMA Architectures: Solaris and
Linux, UltraSPARC/FirePlane and Opteron/HyperTransport. In High
Performance Computing - HiPC 2006, pages 338-352, 2006.

Oren Avissar, Rajeev Barua, and Dave Stewart. Heterogeneous Memory
Management for Embedded Systems. In Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, CASES ’01, pages 34—43. ACM, 2001.
Alessandro Biondi, Paolo Pazzaglia, Alessio Balsini, and Marco Di
Natale. Logical Execution Time Implementation and Memory Opti-
mization Issues in AUTOSAR Applications for Multicores. International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), 2017.

Francois Broquedis, Nathalie Furmento, Brice Goglin, Raymond
Namyst, and Pierre-André Wacrenier. Dynamic Task and Data Place-
ment over NUMA Architectures: An OpenMP Runtime Perspective. In
Proceedings of the 5th International Workshop on OpenMP, INOMP
’09, pages 79-92, Berlin, Heidelberg, 2009. Springer-Verlag.

Junchul Choi, Donghyun Kang, and Soonhoi Ha. A Novel Analytical
Technique for Timing Analysis of FMTV 2016 Verification Challenge
Benchmark. International Workshop on Analysis Tools and Methodolo-
gies for Embedded and Real-time Systems (WATERS), 7, 2016.

Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and
Falk Wurst. Communication Centric Design in Complex Automotive
Embedded Systems. In 29th Euromicro Conference on Real-Time
Systems (ECRTS 2017), volume 76, pages 10-20, 2017.

Robert Hottger, Lukas Krawczyk, and Burkhard Igel. Model-Based Au-
tomotive Partitioning and Mapping for Embedded Multicore Systems. In
International Conference on Parallel, Distributed Systems and Software
Engineering, volume 2, pages 2643-2649, January 2015.

T.S. Rajesh Kumar, R. Govindarajan, and C.P. Ravikumar. On-chip
Memory Architecture Exploration Framework for DSP Processor-based
Embedded System on Chip. ACM Trans. Embed. Comput. Syst.,
11(1):5:1-5:25, April 2012.

Gerardine Immaculate Mary, Z. C. Alex, and Lawrence Jenkins. Re-
sponse Time Analysis of Messages in Controller Area Network: A
Review. Journal of Computer Networks and Communications, 2013.
Ignacio Sanudo, Paolo Burgio, and Marko Bertogna. Schedulability
and Timing Analysis of Mixed Preemptive-Cooperative Tasks on a
Partitioned Multi-Core System. In Proceedings of the 7th International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
Time Systems (WATERS’16), Toulouse, France, 2016.

Jorn Schneider. Why current Memory Management Units are not suited
for Automotive ECUs. In Automotive - Safety & Security, volume 210
of LNI, pages 99-114. GI, 2012.

Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC)
Toolbox, 2006. Online: http://www.mpa.ethz.ch/Rtctoolbox.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

QRONOS: Towards Quality-Aware Responsive
Real-Time Control Systems

Peter Ulbrich*, Maximilian Gaukler?
Department of Computer Science, *Distributed Systems and Operating Systems
Department of Electrical Engineering, f Automatic Control
Friedrich-Alexander-Universitidt Erlangen-Niirnberg (FAU)

Abstract—A key design goal of safety-critical control systems
is the verifiable compliance with a specific quality objective
in the sense of the quality of control. Corresponding to these
requirements, the underlying real-time operating system has to
provide resources and a certain quality of service, mainly in the
form of timing guarantees.

For the design of efficient real-time control systems, con-
sidering only the quality of service is insufficient as it is
firmly intertwined with the quality of control: First of all, the
actual timing has a significant and nontrivial influence on the
quality of control. Vice versa, the temporal precision required to
provide a certain quality of control may vary considerably with
environmental situation and disturbance. Consequently, quality-
of-service requirements are not fixed but may vary depending on
the execution context.

We present our ongoing work on quality-aware adaptive real-
time control systems, addressing three challenges: evaluating
quality of control under consideration of varying timing, static
worst-case verification, and quality-aware scheduling at runtime.

I. INTRODUCTION

Compliance with an application-specific physical specifica-
tion is a primary design objective of real-time control systems:
in a vehicle, this is, for example, to keep lane in a cen-
timeter tolerance range. Further improvement (i.e., millimeter
accuracy) does not lead to further increase in specification
compliance or general benefit. Accordingly, from a control-
theoretical point of view, the system must be designed and
assessed to provide a sufficient Quality of Control (QoC) under
all possible environmental conditions (e.g., wind). Typically,
the QoC is quantified using a quadratic cost function

J=2TQz+u'Ru

based on the state error x and the control-signal u: small
deviation from the desired state £ = 0 and small actuation
correspond to minimum cost J and therefore maximum QoC.

Control systems periodically sample the state of the physical
system via sensors, compute the required control signal, and
send it to the actuators. Due to this close connection to
the outside physical world, real-time control is particularly
sensitive to timing variations: In the example of a moving car,
sampling the position a later time results in a different value
because the car has continued moving. This measurement
deviation may reduce the precision of a lane keeping system.

In general, any deviation from the assumed temporal prop-
erties may negatively impact the QoC [1]-[3]. Thus, the real-
time operating system is tuned for accurate timing of com-
putation and input/output to provide an appropriate Quality

21

of Service (QoS) to the control application running on top.
Here, accurate refers to common assessment criteria such as
deadline adherence or periodicity (i.e., absence of jitter). In
practice, the prevailing point of view is that overall QoC
should be optimized by maximizing the QoS, which boils
down to tightening temporal bounds [2], [4].

In contrast, current trends in real-time systems foster a
well-directed renouncement from this rigid interpretation by
moving away from achieving the best possible QoS towards
one that is good enough: approaches such as dynamically
reconfigurable systems or mixed-criticality scheduling trade
accuracy to boost average performance while easing system
design as well as worst-case handling. For example, mixed-
criticality scheduling [5], [6] provides multiple criticality
levels, each with the expectation of a certain quality. Such
approaches are, however, typically limited to QoS-guarantees
for each criticality level (e.g., control tasks may change timing
or even be omitted) . Consequently, it is assumed that there is a
static mapping between the QoS and the actually relevant QoC.
This static assumption is, for example, also shared by feedback
scheduling techniques [1], [7], [8]. Ultimately, deadlines may
even be intentionally violated for runtime adaptivity. A vivid
example is weakly-hard scheduling of control tasks [9] such
that in any window of m execution periods deadlines only
have to be met for at least n < m times. In summary,
control applications will be faced with more dynamic real-
time computing systems, whose timing behavior will be less
predictable than it used to be.

Although environmental conditions and QoS (i.e., deviations
from the assumed input/output timing) are both determining
factors for the QoC, the latter are neither typically considered
in the traditional design process nor is the relationship between
QoC and QoS trivial.

In previous work [10], [11], we showcased that the dynamic
behavior caused by varying timing (QoS) can be counterin-
tuitive. Figure 1 illustrates an example of this effect on the
controller of an inverted pendulum. The theoretical framework
will be presented later, whereas here we will focus on the
results from a real-time systems perspective. The system is
subject to varying input and output timing (At/T), that is
reading the sensor and writing the actuator values is not
performed periodically as assumed during controller design,
but with a certain jitter. At first (¢ < 10), the system is operated
without delays. Increasing the actuation delay at £ = 10 has a
limited immediate effect but instead causes a gradual increase

in cost J (i.e., decrease in QoC). Upon switching back to
better timing at ¢ = 20, a short-time adverse effect occurs
before the costs have returned to acceptable levels at ¢t = 21.
A static approximation of QoC as a function of the current
timing, an assumption often underpinning embedded control
systems design [12]-[14], fails to describe these memory-like
behaviors, in which the QoC also depends on the history: At
t = 10 and ¢t = 19, the timing is the same, however the QoC
is completely different.

Additionally, the influence of QoS on QoC varies between
different various sensors and actuators, which is important for
the design: In this example the sensor delay (t = 30...40)
has less impact than the actuator delay, which suggest that the
actuator should be given a higher priority than the sensor.

Existing approaches to evaluate the QoC under considera-
tion of the actual runtime behavior, such as JITTERBUG [15],
typically operate on stationary scenarios. In the example of
a car, this translates to constant driving conditions and a
fixed level of criticality for the control tasks. This means
that dedicated QoS levels (timing conditions) are considered
individually and the effects are only evaluated time-averaged.
Therefore, the aforementioned behavior at transitions between
different conditions cannot be analyzed.

II. PROBLEM STATEMENT

In summary, control applications will be faced with more
dynamic real-time computing systems, whose timing behavior
will be less predictable than it used to be. Runtime adaptivity
and scheduling typically focus on QoS bounds, disregarding
the susceptibility of control applications to timing variations.
At the same time, verifiable compliance with a specific QoC is
a key design goal in many settings. Consequently, any stability
verification has to factor in non-perfect timing, which is, as
illustrated by our example, a non-trivial task.

We identified the primary problem to be the nontrivial
mapping of QoS and QoC as well as the fundamentally
different approaches to the development and verification for
control and real-time systems.

In this paper, we therefore address three challenges to ease
the design of adaptive yet verifiable real-time control systems:

(1) Evaluation of a time-dependent QoC for varying sen-
sor/actuator timing in adaptive real-time systems. (2) Static
analysis! and verification of feedback control systems under
consideration of timing variations. (3) A real-time execu-
tive that saves resources by adapting QoS, but still respects
application-specific QoC goals.

III. THE QRONOS APPROACH

We present our vision on the design and verification of adap-
tive real-time control systems with non-deterministic input and
output timing. These complex real-time systems with multi-
ple applications and controllers can significantly profit from

'Note to readers with a control systems background: The term static
analysis from software engineering refers to analysis which happens “offline”
before a program or system is run, in contrast to dynamic analysis. Despite

its name, static analysis does indeed consider the system dynamics (transient
behavior); it should not be confused with “analysis of the stationary case”.

- 0.3 T T) Actuation
> 0.2 - . il--- Sampling
a o1l : :
0 ------ | ——— | 1 [e e |
0 10 20 30 40 50 60
T
il
g O
g 4L
2 3L
—~ 2
S
0 | | | | | |
“ Y 10 20 30 40 50 60

Figure 1. Quality-of-control evaluation for a controlled inverse pendulum for
time-varying actuation and sampling delays [11]. The top figure shows the
delay normalized to the control period, where O is the perfect timing for which
the controller was designed. The bottom figure shows the cost over time, where
1 is the performance for perfect timing and larger values correspond to worse
Quality of Control, i.e., larger amplitude of error and control signal.

dynamic reconfigurability and mixed-criticality scheduling to
boost average performance. Our goal is to achieve the benefits
of such approaches without loosing the indispensable feature
of traditional static scheduling: guaranteed QoC.

We, therefore, present our ongoing work on Quality-Aware
Responsive Real-Time Control Systems (QRONOS), an ap-
proach to (a) model and quantify average-case QoC in a time-
dependent manner, (b) incorporate non-deterministic input and
output timing in the design of controllers and ease verifica-
tion of the resulting worst-case QoC, and (c) leverage that
knowledge by a quality-aware design of the real-time operating
system executing the controllers.

In the following sections, we go through these aspects and
detail our previous and ongoing work as well as provide an
outlook on our future challenges and steps.

A. Average-Case Analysis of Quality of Control

As a first step, we focused on average-case QoC evaluation,
i.e., how well the system performs typically. Besides QoS in
the form of non-perfect input/output timing, we consider the
influence of stochastic physical disturbance (e.g., side wind),
measurement noise and control situation (e.g., fast curve vs.
straight road). For this complex system model, we developed a
QoC evaluation scheme in [11] that can quantify the combined
negative impacts of said effects. To gain insight into the
dynamic behavior at changing timing, e.g., due to a changing
criticality level in mixed-criticality-scheduling, we introduce a
noise-averaged, but time-dependent QoC, roughly equivalent
to the performance over time for typical disturbance.

Formally, this is modeled as the time-dependent expec-
tation value Ex{J(t)} about the noise A, where J(t) is
the cost function from Section I, which weights physical
state and control signal amplitude. To compute this averaged
QoC without averaging over a multitude of simulations with
different random sequences for disturbance and measurement
noise, a scheme to directly evaluate this expectation was
developed. It is based on first reformulating the problem as
a linear impulsive system, which combines continuous and

22

T2

t

safety verification
actual worst-case

1

Figure 2. The bounds for the physical state x obtained by a finite number of
simulations are too optimistic, whereas safety verification is too pessimistic.

discrete dynamics to model the plant as well as sampling
and actuation of the discrete-time controller respectively. As a
second step, a stochastic discretization is applied, from which
the QoC is computed. The algorithms are currently available
for deterministic or discrete stochastic timing [11].

Figure 1 gives the results of our QoC model for the
inverted pendulum example discussed in Section I. Here,
a deterministic (non-random) timing sequence was used for
simplicity. This example is particularly suited to our approach
as it demonstrates the possible efficiency gains: The model
returns the exact result in a fraction of a second, whereas
averaging over a multitude of simulations requires over five
hours for an approximation with about 3 percent error [11].

With this, we offer a systematic approach for evaluating the
temporal development of the QoC. We consider this a vital
step towards an accurate usage of QoC as an evaluation metric
in dynamic and adaptive real-time settings, such as mixed-
criticality scheduling, and as a basis for further research on
co-design of real-time control systems. Since our approach
takes traditionally-designed control systems as input, it can be
applied to evaluate the impact of timing on existing systems.

Outlook: We are currently working on further reduction of
the computational effort and extending the efficiency gains to
a wider problem class. The aim is to use the model (a) also
for complex control systems with multiple inputs and outputs
and (b) at runtime for QoC-aware timing adaptation.

B. Worst-Case Analysis of Quality of Control

The average-case QoC discussed in the previous section is
important to quantify how the system will behave typically.
On the other hand, it is equally important to show that the
physical system always stays within safety bounds, even in
the rare but possible worst case.

While randomized simulation is a pragmatic approach to
assess the average performance, it is generally incapable of
proving worst-case properties, due to the infeasible number of
possible execution flows and timings. As visualized in Fig. 2,
simulations can only determine an optimistic lower bound of
the worst case. Instead, we opt for a sound overapproximation
of worst-case behavior by verification methods.

Currently, we are working on worst-case verification of real-
time control systems with uncertain input and output timing
by modeling them as hybrid automata [16]. As with the linear
impulsive systems used in Section III-A, hybrid automata
allow combining the discrete-time and continuous-time aspects
of a real-time control system. Unlike linear impulsive systems,

23

which typically require additional informal explanation of the
timing model, hybrid automata are a machine-readable precise
formal description directly suitable for automatic verification.

As with any form of static analysis, the fundamental chal-
lenges are soundness, feasibility, and tight bounds: For the
example of a car, we strive to prove that the worst-case track
deviation is less than a few centimeters, not meters. Figure 2
illustrates that the bounds shown by verification can signif-
icantly exceed the actual worst case, requiring unnecessary
safety margins in the design. Our preliminary experiments with
existing tools indicate that verification is feasible with useful
bounds in some cases yet challenging in general [16].

Therefore, we are currently pursuing an alternative approach
to worst-case verification: instead of proving stability in the
presence of jitter, we eliminate the jitter for input and out-
put operations altogether. This obligation requires the real-
time system to increase its QoS to the maximum. For its
implementation, a well-established method is to resort to a
completely static schedule and sound WCET analysis of all
control activities. However, sensors and actuators must admit
deterministic response times, which typically excludes smart
sensors with internal signal processing. In turn, we can resort
to traditional stability verification of feedback control loops.
We show how to nonetheless benefit from adaptive real-time
system techniques and our QoC model in the next section.

Outlook: While numerous techniques for the efficient veri-
fication of discrete-time controllers exist, to the best of our
knowledge, none of them supports timing uncertainties as
presented in our timing model [16], which addresses real-time
systems with multiple sensors and actuators by introducing
periodic timing windows. Therefore, future work will entail
an extension of existing techniques such as [17], [18].

C. Quality-Aware Real-Time Executive

To tackle the challenge of saving resources without violat-
ing the application-specific QoC requirements, we propose a
quality-aware real-time executive. That is, operating system
support and scheduling instrumentation to make the QoC a
first-class citizen equal to QoS, i.e., temporal parameters.

Therefore, we are working on an additional scheduler mod-
ule that applies to jobs with control activities. Based on a
simplified variant of the QoC-model from Section III-A, the
module adapts release times and deadlines such that it lever-
ages the situation-dependent reserves (i.e., margin between
current and specified QoC) to boost average performance and
overall runtime flexibility. At the same time, it ensures that
adverse effects of varying timing (cf. Section I) are considered
and do not jeopardize stability.

As mentioned earlier, worst-case stability analysis of feed-
back control under the assumption of non-deterministic timing
is still subject to research. We find that even with progress
in this direction it will be infeasible to verify dynamically
scheduled real-time systems with QoC-dependent adaptation
of QoS. Therefore, we propose a hybrid execution model
where the system switches to a pre-computed, time-triggered
schedule whenever a pessimistic QoC-model anticipates a

potential violation of the minimal QoC in the next control
step. To yield worst-case guarantees, this model based on
Section III-B assumes worst QoS and disturbance.

We call this switching to a static schedule (i.e., deterministic
input and output timing) and a verified controller setting (i.e.,
stability and WCET) our safety net. While in this mode, the
QoC will recover verifiably.

This combination of an optimistic QoC-aware and a de-
terministic safety mode is an ideal supplement to established
approaches, such as mixed-criticality scheduling. In contrast to
traditional scheduling approaches, it is the potential violation
of the QoC that indicates a change in criticality whereas
control activities are otherwise categorized as low-criticality
jobs. Additionally, control-theoretical approaches exist to im-
plement controllers with graded assurance levels, for example,
the Simplex architecture as used in [19]: regularly, a controller
that performs well in the average case (here: optimistic mode)
but does not offer worst-case guarantees is used. If an unsafe
situation is imminent, a safety mechanism switches to a safety
controller (here: safety mode) that offers strict worst-case
guarantees but performs worse in the average case.

Outlook: We are currently working on an efficient im-
plementation of the QoC-model and the safety net based
on LitmusRT [20]. Here, we investigate the potential for an
offline analysis of all possible QoC conditions and to thereof
derive a lookup table to eliminate the computational overhead.
A further promising candidate that we currently investigate
for runtime QoC evaluation are machine-learning approaches.
For the safety mechanism, we are working on the control
theoretical question of a verifiable design such that it does not
activate too often, but still provides provable safety guarantees.

Solving worst-case QoC verification for uncertain timing
will permit a relaxation of the deterministic safety mode. Then,
only timing bounds instead of timing instants will have to be
guaranteed, which greatly simplifies the implementation.

IV. SUMMARY

Real-time control systems face a fundamental design con-
flict between real-time system and controller design: to im-
prove flexibility and efficient resource usage, design goals are
shifting from deterministic execution towards good enough
QoS properties with weaker guarantees. However, degraded
temporal properties, in particular, any variation in sensor or
actuator timing, can jeopardize quality-of-control guarantees.

To solve this conflict between efficiency and QoC guar-
antees, we propose a holistic approach with two modes: an
optimistic mode uses dynamic scheduling and adapts the QoS
of the control application to the lowest value permitted by
current and future QoC. Verification of this mode is generally
infeasible. Thus, we provide worst-case guarantees instead by
switching to a safety mode if the minimum permissible QoC
is about to be violated. This safety mode uses time-triggered,
deterministic scheduling to facilitate QoC verification.

We consider our approach a vital step towards the use
of runtime dynamics and adaptivity in safety-critical control

24

systems. Its key features are models to capture the non-trivial
relation of QoC and QoS for both average-case and worst-case.

Future work will be directed towards the realization of the
proposed approach, especially theory and implementation of
the safety mechanism, QoC prediction and worst-case analysis.

REFERENCES

[1] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation of
jitter control methods,” in Proc. of the 15th Intl. Conf. on Real-Time and
Network Systems (RTNS ’07), 2007, pp. 163-172.

[2] B. Wittenmark, J. Nilsson, and M. Térngren, “Timing problems in real-
time control systems,” in Proc. of the American Control Conf., New
York, NY, USA, 1995, pp. 2000-2004.

[3] A. Ray, “Output feedback control under randomly varying distributed
delays,” Guidance, Control, and Dynamics, vol. 17, no. 4, pp. 701-711,
1994.

[4] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 1st ed. Kluwer Academic Publishers, 1997.

[5] S. Vestal, “MetaH support for real-time multi-processor avionics,” in
Proc. of 5th Intl. Work. on Parallel and Distributed Real-Time Systems
and 3rd Work. on Object-Oriented Real-Time Systems. 1EEE, Apr 1997,
pp. 11-21.

[6] A. Burns and R. Davis, “Mixed criticality systems — a review,” De-
partment of Computer Science, University of York, Tech. Rep. 9th ed.,
2016.

[7] D. Simon, A. Seuret, and O. Sename, “On real-time feedback control
systems: Requirements, achievements and perspectives,” in Systems and
Computer Science (ICSCS), 2012 Ist Intl. Conf. on, Aug. 2012.

[8] A. Cervin and J. Eker, “Feedback scheduling of control tasks,” in Proc.
of the 39th IEEE Conf. on Decision and Control (CDC ’00), vol. 5.
New York, NY, USA: IEEE Press, 2000, pp. 4871-4876.

[9]1 G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”

IEEE Trans. on Computers, vol. 50, no. 4, pp. 308-321, Apr. 2001.

T. Klaus, F. Franzmann, M. Gaukler, A. Michalka, and P. Ulbrich,

“Poster Abstract: Closing the Loop: Towards Control-aware Design of

Adaptive Real-Time Systems,” in Proc. of the 37th Real-Time Systems

Symp. (RTSS ’16). 1EEE, 2016, pp. 363-363.

M. Gaukler, A. Michalka, P. Ulbrich, and T. Klaus, “A new perspective

on quality evaluation for control systems with stochastic timing,” in

Proceedings of the 21st International Conference on Hybrid Systems:

Computation and Control - HSCC '18. ACM Press, 2018.

A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzén, “Feedback-

feedforward scheduling of control tasks,” Real-Time Systems, vol. 23,

no. 1-2, pp. 25-53, 2002.

G. Buttazzo, M. Velasco, and P. Marti, “Quality-of-control management

in overloaded real-time systems,” IEEE Trans. on Computers, vol. 56,

no. 2, pp. 253-266, 2007.

F. Flavia, J. Ning, F. Simonot-Lion, and S. YeQiong, “Optimal on-line

(m,k)-firm constraint assignment for real-time control tasks based on

plant state information,” in IEEE Intl. Conf. on Emerging Technologies

and Factory Automation (ETFA "08). 1EEE, 2008, pp. 908-915.

B. Lincoln and A. Cervin, “JITTERBUG: a tool for analysis of real-time

control performance,” in Proc. of the 41st IEEE Conf. on Decision and

Control (CDC °02). 1EEE, 2002, pp. 1319-1324.

M. Gaukler and P. Ulbrich, “Worst-case analysis of digital control loops

with uncertain input/output timing,” in ARCH19. International Workshop

on Applied veRification for Continuous and Hybrid Systems, 2019,

accepted for publication.

S. Bak and T. T. Johnson, “Periodically-scheduled controller analysis

using hybrid systems reachability and continuization,” in 2015 IEEE

Real-Time Systems Symposium. 1EEE, dec 2015.

L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and

S. L. Niculescu, “Recent developments on the stability of systems with

aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309-335,

Feb. 2017.

D. Seto, B. H. Krogh, L. Sha, and A. Chutinan, “Dynamic control system

upgrade using the simplex architecture,” IEEE Control Systems, vol. 18,

no. 4, pp. 72-80, Aug. 1998.

[20] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT: A testbed for empirically comparing real-
time multiprocessor schedulers,” in Proceedings of the 27th Real-Time
Systems Symposium (RTSS '06), 2006, pp. 111-126.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

AUTOSAR Runnable Scheduling for Automobile
Control Application’s Optimal Performance

Daeho Choi

Wootae Jeon

Jong-Chan Kim*

Grad School of Automotive Engineering Grad School of Automotive Engineering Dept. of Automobile and IT Convergence

Kookmin University
Seoul, Korea
chleogh0531 @kookmin.ac.kr

Abstract—Automobile control applications should extract the
best possible control performance out of its underlying hard-
ware resources like CPU. Since the control application’s timing
behavior heavily affects the control performance, this paper
focuses on optimizing the control performance by finding the
proper scheduling parameters for a given control application.
We specifically target the industry standard AUTOSAR software
architecture where the application’s timing behavior is collec-
tively determined by runnable periods. Runnable is a small
function with its trigger condition such as execution period.
With this motivation, this paper proposes a novel method that
systematically finds the optimal runnable periods that maximize
the control performance. Instead of using time-consuming combi-
natorial searches, our method analytically finds the near-optimal
runnable periods, which, as our evaluation result shows, has only
about 3% of performance loss.

Index Terms—AUTOSAR, Runnable Scheduling, Runnable
Periods, Control-Scheduling Co-Design

I. INTRODUCTION

When developing automobile control applications, AU-
TOSAR (AUTomotive Open System ARchitecture) has been
widely accepted as the standard software architecture. In
AUTOSAR, a control application is developed as a set of
software components where each software component is also
composed of a number of runnables, which is a small function
with a trigger condition such as its execution period. Since
AUTOSAR uses real-time operating systems as its underlying
execution environment, runnables with identical periods are
grouped together forming a number of real-time periodic tasks.
Thus for the timing perspective, determining each runnable’s
period plays a critical role when integrating the system.

For this critical runnable periods decision, the current
approach is usually ad-hoc where each runnable’s function
developer simply decides his or her runnable’s period based
on their previous experiences regarding how it affects the
overall control performance. Note that a control application’s
timing behavior heavily affects the system’s resulting control
performance [1]. Thus the industry needs a new systematic
approach for the runnable periods decision for the purpose of
both enhanced control performance and reduced manufactur-
ing cost.

With this motivation, this paper presents an AUTOSAR
runnable scheduling method, which finds the optimal runnable

Kookmin University
Seoul, Korea
wjsdnxo@kookmin.ac.kr

Kookmin University
Seoul, Korea
jongchank @kookmin.ac.kr
*Corresponding Author

periods which maximize the control performance. This prob-
lem was first formulated by our previous work [2], which
proposed a combinatorial search method for simple control
applications with only sequential data dependencies between
runnables. This paper further develops the original method
for more complex applications. For that, a control application
is modeled as a directed acyclic graph (DAG) of runnables
with data dependencies represented as directed edges between
runnables. Also the control performance of the application
is modeled as a linear cost function of control period and
end-to-end delay. Combining the DAG model and the control
cost model, we formulate a new optimization problem which
minimizes the control cost by controlling runnable periods.

As an initial effort towards a general solution for arbitrary
DAG models, we first present a preliminary solution for a
limited set of DAG models, more specifically, which has no
crossing node in the middle of the graph. With crossing nodes,
we mean a node with multiple input edges or multiple output
edges. When solving the problem, we try to find an analytical
method which does not require time-consuming search pro-
cess. For that, we transform our optimization problem with
n runnable periods to an alternative optimization problem
of only 3 free variables. Although this simplification gives
up the optimality, we can find an analytical way that uses
the Lagrange multiplier method that finds the near-optimal
solution. Our evaluation result shows that the performance loss
compared to the optimal solution is only under or about 3%
for our test set.

The rest of our paper is organized as follows: Next sec-
tion gives a brief background and describes our problem. In
Section III, our AUTOSAR runnable scheduling method is
formally presented. Section IV gives the evaluation results.
Finally, Section V concludes this paper with an emphasis on
our remaining future works.

II. BACKGROUND AND PROBLEM DESCRIPTION

A. System Model

This paper considers an AUTOSAR-based automobile con-
trol application, which is designed as a set of IV software com-
ponents {C7,Cy,---,Cy}. Each software component C; is
also composed of a number of runnables {r;1, 2, -+ ,7ic;|}

25

Sensor

(=®

Fig. 1. Example DAG (Directed Acyclic Graph) representing a AUTOSAR
software component made of seven runnables with one input sensor and one
output actuator

where |C;| denotes the number of runnables in C;. We assume
that each runnable r;; is required to be periodically triggered.

As an initial effort, this paper assumes simple control
applications with only a single software component. Thus,
without loss of generalization, our system can be formally
described as a set of n runnables denoted by

iTnt

Each runnable r; is also denoted by

{ri,ro, -

Ty = (pi76i)

where p; is the runnable’s period and e; is the worst-case
execution time. Note that e; is a given value whereas p; is a
tunable parameter to the system designer’s needs.

Between runnables, there are data dependencies where a
sender writes its output to a shared buffer, and a receiver
reads out the data. Note that this data communication is
asynchronous since each runnable periodically executes with
its own execution period. Figure 1 shows a simple DAG
with seven runnables {ry,rs,--- ,77}. Each node represents a
runnable and arrows between runnables represent writer-reader
data dependencies. We assume that the first runnable r; is
responsible for accepting the sensor data and the last runnable
ry, (r7 in the figure) takes the role of controlling the actuator.
Thus we simply call r; a sensor runnable and r,, an actuator
runnable.

Our system in brief can be described as in the following.
The sensor runnable periodically reads out the sensor data
and processes it producing output data to other runnables.
Then each runnable also periodically executes reading from
the predecessors and writing to the successors. As a result,
new sensor data gradually flows from the sensor runnable to
the actuator runnable. After the new sensor data goes through
all the runnables, the actuator runnable finally produces the
proper actuator command based on the fresh environmental
knowledge.

B. Control Performance Model

For the control performance model, we use the the linear
control cost function originally defined by Bini and Cervin [3],
which is a linear function of sampling period 7" and delay A
denoted by

J(T,A) =aT + A (1

where o and 3 are application-specific constants. Note that
both o and [should be positive since larger period and delay
should increase the control cost.

C. Schedulability Constraint

When integrating the runnables on an execution platform,
runnables are mapped to proper real-time periodic tasks. One
simple approach is to make n respective periodic tasks for
each runnable, which can produce too many tasks. More prac-
tical approach is to group runnables with the similar periods
together to form a limited number of tasks. For any method,
the real-time tasks should be schedulable meeting every task’s
deadline. In this paper, we pick the first approach. For the
schedulability guarantee, we use the utilization bound method,
which guarantees the system schedulability in case the total
utilization U =)" | < is under a certain threshold value Up.
Up depends on the scheduhng algorithm. For example, for the
RM (Rate Monotonic) scheduling, Up is roughly 69.3%, and
for the EDF (Earliest Deadline First) scheduling algorithm, U
is 100%. Assuming EDF, our schedulability constraint can be
represented as

n €;
U(p1,pa,-++ »Pn) Zp—)

D. Problem Description

Assuming the above system model, control performance

model, and schedulability condition, our problem can be
formally defined as follows:
Problem Description. With a given software component
with a DAG-structured runnables set {ri,ro,---,7,} and
a control cost function J(7',A), find the optimal runnable
periods {pi1,pa, - ,pn} which minimize the control cost
while meeting the system schedulability.

III. AUTOSAR RUNNABLE SCHEDULING
A. Control Cost and Runnable Periods for DAG Model

To find the optimal runnable periods, our first step is to
transform the control cost function J (7', A) into a function of
our tunable parameter p;.

From the perspective of the vehicle, only the actuator
runnable r,, directly controls it. Thus, our control period T'
is dependent on only the actuator runnable’s period p,. To
be more accurate, it is the longest time distance between two
consecutive executions of r,,. This worst-case scenario occurs
when two consecutive r,,s are scheduled at the beginning of a
certain period and at the end of the next period, respectively,
making the longest time distance. Thus 7" can be defined as

T = 2pn- 3)

For the end-to-end delay A, it is defined as the worst-case
time delay from the sensor to the actuator. Note that there can
be multiple different paths from the sensor runnable to the
actuator runnable. For such m paths, we define P, as

P, = {i € N|r; € k-th path,1 < i <n} for 1 <k <m, (4)

which is a set of runnable indexes in the k-th path with |Pg|
denoting the number of elements in it. We do not include r;

26

and r,, in paths since they do not belong to a specific path.
Then the end-to-end delay A can be defined as

A=2 2p; 2. 5
p1+kg%%>§n]<z p>+p)

i€Py

Note that while going through a runnable r;, in the worst case,
it takes 2p,. It happens when a certain r; instance, scheduled
at the beginning of its period, slightly misses the new input
data and the next instance is scheduled producing its output
at the end of the period.

To make a simpler form of A that can be used in the
optimization, we only consider a simplified DAG form as in
Figure 2. In the simplified form, there is no crossing node and
hence there are m independent paths from r; to r,,. From now
on, DAG means this simplified DAG form, if not otherwise
specified. Also, for the m paths, we assume that the sum of
participating runnable’s periods within every path is the same',
which is formally expressed using a new notation p, by

=Y === Y

1€Py i€P2 1€P,,
Then we can simply define A as
A =2(p1 + P« + Dn)- (6)

Then, using (3) and (6), we can finally transform J(T, A)
into a function of py, p., and p,, as in

J(P1,PxsPn) = @ X 2pp + B X 2(p1 +ps +). (D)

B. Our Optimization Method

Within each k-th path, the sum of all the participating
runnable’s period is define as p.. Then we distribute p, to
participating runnables proportional to each e; within the path.
The above policy can be expressed as

€i
Pi= <P«
ZjGPk e.j
Then, using (3), (6) and (8), the utilization function

U(p1,p2,- - ,pn) can be also transformed into a function of
P1, P, and p, as in

(i € Py). (8)

m
e 2ok=1 2ick, 2ojeby & Lo

U(Pl»P*apn) =
P1 D DPn
m
_a 2 k=1 2icw, [Prles Lo
b1 D+ Pn

Now, our optimization problem is defined as

minimize J(p1, ps, Pn)
P1,P%,Pn
SllbjCCt to U(php*apn) < 15

which has only three free variables pi, p., and p,,.

IWe argue that this is the necessary condition for the optimal periods at
least for the simplified DAG form. Due to the page limit, this will be further
explained in our future work.

27

runnables in the 1st path

runnables in the m-th path

Fig. 2. Simplified DAG form with no crossing node

For the optimization, we decide to use the Lagrange multi-
plier method and define the Lagrange’s equation as

L = J(p1,pesn) — MU (P1,Ds, Pn) — 1)
=2B(p1 + p«) +2(a+ B)pn)
A <61 N Lke1 Lic, [Prlei Lo 1) .

D1 D Pn

Then, we take the partial derivatives of p1, p«, pn, and A
of (9) and solve the equations of

oL 0L 0L 0L
V5= (Gt e) O

which yields the following optimal p1, p., and p,:

i a4+ p)ere,
pr= e+ €1ZZ|PI€|€¢+“(§)1
k=1icPy

i

Dkt 2iepy |Prles (10)
P+ = pl\/ e
_ Ben
Pn= D1 (a T 5)61 .
Now, applying (8) to (10), our optimal periods
P1,P2,- - ,Pn} can be simply calculated.
ply

IV. EXPERIMENT

In this section, we evaluate our runnable scheduling method
in terms of both its resulting control performance and the
required optimization time. We compare our method denoted
by Ours with Optimal, which is the optimal runnable periods
that minimize the control cost. To find the optimal periods,
we conduct exhaustive searches for the entire integer problem
space bounded by 1 < p; < 1000.

We use the four DAGs in Figure 3 for the evaluation. In
the figure, each DAG is denoted by (nR, mP), where n is
the number of runnables and m is the number of paths in
each DAG. Below each runnable r;, its assumed execution
time e; is depicted. For the control cost function which is the
optimization objective function, we use

1 1
— T4+—A

T,A) =
IT4) 1000 1000

e, =3 e;=3

ez =21

(a) 3R, 1P) (b) (4R, 2P)

e, =8

(¢) (5R, 2P)

e,=7 es=14

(d) (6R, 2P)

Fig. 3. Example DAGs with varying number of runnables (denoted by nR)
and number of paths (denoted by mP) with execution times shown below
each runnable

TABLE I
RUNNABLE PERIODS FOUND BY OUR METHOD COMPARED TO THE
OPTIMAL PERIODS EACH FOUR EXAMPLE DAGS

DAG Periods by Ours Optimal Periods
(3R,1P) {8, 10,7} {10, 10, 6}

(4R2P) {15, 64, 64, 13} {16, 63, 63, 12}
(5R,2P) {13, 20, 29, 49, 12} {15, 22, 25, 47, 11}
(6R2P) {18, 38,75, 38,75, 16} {18, 46, 64, 46, 64, 15}

Table I compares the runnable periods found by our method
with the optimal runnable periods. Note that the sets in the
table represent the runnable periods as is {p1,p2,- - ,pn}. Al-
though our method initially finds real-valued periods, they are
rounded to the nearest integers for the ease of comparison with
the integer-valued optimal periods. The resulting solutions of
the two methods show little euclidean distances. Based on this
finding, it is also possible to combine our analytical method
and the search method by using our runnable periods as the
starting position of the further searches.

Figure 4 compares the normalized control cost of the two
methods. In the figure, we can find that although our solution is
not the optimal one, the performance loss is negligible, which
is under about 3%. However, on the contrary, Figure 5 shows
very different result regarding the time required to find the
solution. In the figure, as the application’s complexity grows
from (3R, 1P) to (6R, 2P), Ours method shows little difference
for the optimization time whereas Optimal method eventually
requires too much time even for applications with modest
complexity. We can presumably argue that Optimal method
cannot be applied to industry-sized applications in practice.

V. CONCLUSION

This paper presents an AUTOSAR runnable scheduling
method for the optimal performance of control applications.
Target control application is modeled as a DAG of runnables
and the control performance model is formulated as a linear
cost function of the system’s control period and end-to-end

28

101.9 100 1024 100 1034

|1l

(4R,2P) (5R,2P) (6R,2P)
(# of Runnables , # of Paths)

o
o

o]
o

[o2
o

I Optimal

I Ours

Nomalized Control Cost (%)
iy
o

n
o

(38R,1P)

Fig. 4. Comparison of normalized control cost for example DAGs

6 hours

o
Q
3
()
£
[
c
k<]
T
N
£
8' 0.022 ms
0.016 ms -
»[0.007 ms 0.012 ms A —A
10 L L L L
(3R,1P) (4R,2P) (5R,2P) (6R,2P)

(# of Runnables , # of Paths)

Fig. 5. Comparison of optimization time for example DAGs

delay. Then we define the control period and end-to-end delay
as functions of runnable periods, respectively, which formulate
an optimization problem to minimize the control cost using
runnable periods as tunable parameters. As our initial efforts,
we present an analytical solution for simplified DAG forms
with no crossing node. Our evaluation result shows that our
optimization method can quickly find near-optimal runnable
periods with a negligible performance penalty.

In our future work, we plan to generalize our method
for the general DAG model. Also, we plan to optimize the
runnable to task mapping process considering the intra-task
data dependencies and runnables execution sequence.

ACKNOWLEDGMENT

This work was supported partly by the National Research
Foundation (NRF) grant funded by the Korea government
(MSIT; Ministry of Science and ICT) (No. A2019-0098)
and partly by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea
government (MSIT) (2014-0-00065, Resilient Cyber-Physical
Systems Research).

REFERENCES

[11 A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen, “How
does control timing affect performance? analysis and simulation of timing
using jitterbug and truetime,” IEEE Control Systems, vol. 23, no. 3,
pp. 16-30, 2003.

[2] T.-W. Kim, G.-M. Lee, and J.-C. Kim, “Autosar runnable scheduling
for optimal tradeoff between control performance and cpu utilization,”
in Proceedings of the 18th IEEE International Conference on Control,
Automation, and Systems (ICCAS), pp. 602-605, 2018.

[3] E. Bini and A. Cervin, “Delay-aware period assignment in control
systems,” in Proceedings of the 29th IEEE Real-Time Systems Symposium
(RTSS), pp. 291-300, 2008.

Demo Abstract: Testbed for Practical
Considerations In Mixed-Criticality System Design

Vijaya Kumar Sundar, Arvind Easwaran
Nanyang Technological University, Singapore
Email: vijayaku003 @e.ntu.edu.sg, arvinde @ntu.edu.sg

I. INTRODUCTION

Increase in number of autonomous functionalities has led to
design approaches where software elements requiring varied
levels of execution reliability are made to share a common
platform (hardware and software) and such systems are termed
as Mixed-Criticality Systems (MCS). An important challenge
in designing MCS is to handle uncertainties in the execution
behaviour such as a budget overrun of a software element
(or task) in a safe and effective manner. For this purpose,
functional safety standards such as ISO 26262 [1] specify a
set of rules and rigorous process which necessitate the system
design to incorporate sufficient mechanisms to prevent the
propagation of faults from tasks certified to lower criticality
level to tasks certified to higher criticality level.

A majority of the existing MCS task models (reviewed in
[2]) consider criticality to denote the relative importance of a
task and use it to achieve graceful degradation of the system
either by suspending or degrading tasks with relatively lower
criticality level than the overloading task. As pointed out in [3],
notion of criticality as the relative importance of a task may
be appropriate only for dual-criticality MCS models (where a
task can be either high critical or low critical). For instance,
it has been observed that in a system with 4 criticality levels,
to handle budget overrun of any task at criticality level 4
(highest), degradation of tasks with criticality level 3 may not
be acceptable. As stated in [4], the notion of criticality, relative
importance and degradation of a functionality in an MCS
should be loosely coupled entities. To achieve this, we consider
a context-aware degradation strategy with the following three
properties:

1) Upon the system overload, there is a flexibility to choose
the tasks that has to be degraded depending on the
overrun task and independent of their criticality level.
This allows the designer to consider degradation of even
higher criticality tasks while keeping relatively lower
criticality tasks unaffected.

2) Second, there is a support for multiple ways of degrading
a task’s budget. This allows the designer to choose a
specific way of degrading a task’s budget depending on
the tasks that have overrun their budget.

3) Third, instead of using criticality to decide tasks to
be degraded, criticality is used to choose the degraded
budget (among multiple degraded budgets) of the task
when multiple tasks overrun their budgets.

The above properties are motivated from an automotive case
study discussed in [5] where the possibility of multiple ways of
degrading a higher critical LIDAR processing task is consid-
ered. A paper describing our context-aware degradation model
can be found at [6]. In order to showcase the benefit of context-
aware degradation, an automotive testbed is built to observe
the effects of task degradation schemes enforced by different
MCS task models as well as the context-aware degradation on
the safety and performance aspect of the vehicle which are
generally not possible with synthetic task set experiments.

II. AUTOMOTIVE TESTBED
A. Testbed Architecture

)

TORCS - Simulator |

Budget_Yes
Querru
Select degraded
>
Update new
budgets

Fixed Priority Scheduler

Gateway || Gateway

Simulink Model

Figure 1. Testbed Architecture

The testbed is a Hardware-In-The-Loop simulation platform
consisting of The Open-source Race Car Simulator (TORCS)
[7] - vehicle simulator, simulink model, gateway, Electronic
Control Unit (ECU) and Controller Area Network (CAN).
The testbed and its architecture is shown in the Figure 1.
The simulink model acts as an interface between TORCS and
the gateway. It is used to collect sensor and actuator values
for real-time monitoring and post-processing. The gateway
consists of embedded controllers (FreeScale Kinetis Board
[8]) networked over an industry standard CAN bus which
converts the simulated sensor values from TORCS to CAN
messages. Texas Instruments Hercules development board [9]
acts as an ECU. The ECU runs FreeRTOS, a pre-emptive fixed
priority based real-time scheduler. The control algorithms of
applications are implemented as real-time tasks on FreeRTOS

29

hosted on the ECU. The gateway receives the sensor data from
TORCS through serial communication and dispatches them as
CAN messages to the ECU executing the control algorithm
tasks to generate actuator commands like throttle, brake and
steer. These commands are sent back to TORCS through the
Universal Asynchronous Receiver/Transmitter (UART). The
testbed simulates two vehicles, a lead vehicle controlled by
the simulink model and a follower vehicle controlled by the
ECU. Values such as position, velocity, acceleration, brake,
road curvature, distance travelled from starting point, etc. of
the both lead and follower vehicles are transmitted to the ECU
as CAN messages. Under the absence of budget overrun, all
tasks are operated with a time period of 20 ms since TORCS
by default provides sensor and vehicle data for every 20 ms.
The safety functionalities implemented are considered to be
certified to one of four Automotive Safety Integrity Levels
(ASIL) as per ISO 26262.

B. Automotive Applications Implemented

1) Lead vehicle detection: The lead vehicle detection func-
tionality is implemented using two tasks, namely pseudo-
radar and vehicle to vehicle (V2V) communication. They are
considered to be certified to ASIL C and ASIL B respectively.
In our testbed, the euclidean distance calculated by the pseudo-
radar task is used by other applications only if lead vehicle
is within 120-degree field-of-view and within a range of 30
meters. This simulates the actual radar since 120 degree field-
of-view may not be sufficient to detect the lead vehicle in
curves. V2V task calculates the euclidean distance between
vehicles in all conditions (including curves).

2) Longitudinal and Lateral Vehicular Control: The cruise
control (CC) task certified to ASIL C, computes the necessary
acceleration and brake commands based on the distance be-
tween vehicles calculated by the pseudo-radar and V2V tasks.
ACC can operate in two modes viz ‘constant time headway’
or ‘constant velocity’. In constant time headway mode, CC
implements an algorithm to maintain distance between the
vehicles such that under heavy braking of the lead vehicle,
there is sufficient time for the follower vehicle to apply
brakes to maintain safe distance. To achieve this, CC can
use Proportional Integral Derivative (PID) control or ON-
OFF control mechanism. CC task also implements Dynamic
Speed Adaptation (DSA) functionality to detect and indicate
the presence of curves and to bring down the vehicles’ velocity
to a predetermined value for a safe vehicle manoeuvre through
the curves. Computation of required brake command of the
host vehicle is decided by CC considering the presence of
both the curve and the lead vehicle ahead. We consider two
ways of degrading the CC task. With type 1 degradation,
CC operates with ON-OFF control instead of PID leading
to reduced execution time. With type 2 degradation, CC ig-
nores the DSA functionality also leading to reduced execution
time. For PID control mechanism, an algorithm presented as
simulink model in [10] was implemented. The implementation
discussed in [11] is used for DSA. The safety functionality of
Steering Control (SC) application is to maintain the vehicles’

position at the centre of the lane while the Collision Avoidance
(CA) applies emergency braking if imminent collision is
detected. Both SC and CA are implemented based on [10]
and are certified to ASIL D (highest).

III. DEMONSTRATION

After the testbed is up and running, we will demonstrate
its following key functionalities: 1) artificially trigger budget
overrun of tasks using push buttons to simulate different
task overrun scenarios where each scenario differs by tasks
that have overrun their budgets. 2) a real-time plot of the
live measurements of parameters such as the closest distance
maintained between lead and follower vehicles denoted as
D in, values of acceleration and heading error of the follower
vehicle. 3) Based on these measurements, for each overrun
scenario, the effect of the context-aware degradation and two
different degradation schemes considered in the existing MCS
literature to handle budget overruns will be evaluated for the
safety and the performance of the vehicle. Scheme 1 considers
the suspension of V2V task - task with relatively lower criti-
cality level. Scheme 2 considers only type 1 degradation of CC
task - a single way of degrading a relatively lower criticality
task’s budget. With context-aware degradation, depending on
the task overrun, either type 1 or type 2 degradation of CC task
is chosen. The value of D,,;, is considered as the measure of
safety whereas acceleration and heading error are considered
as the measure of performance. 4) We will also describe the
changes to the existing FreeRTOS API that has been done to
incorporate context-aware degradation strategy.

IV. CONCLUSION AND FUTURE WORK

In this demo paper, we present the design and imple-
mentation of an automotive testbed to evaluate the safety
and performance of different degradation schemes along with
context-aware degradation for mixed-criticality systems. As
future work, we will integrate mode change protocols with
the context-aware degradation.

REFERENCES

[1] “ISO 26262 Road Vehicles — Functional Safety,” International Organi-
zation for Standardization, Geneva, CH, Standard, Nov 2011.

[2] A. Burns and R. 1. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv., vol. 50, no. 6, pp. 82:1-82:37, Nov. 2017.

[3] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “An industrial view on the
common academic understanding of mixed-criticality systems,” Real-
Time Systems, vol. 54, no. 3, pp. 745-795, Jul 2018.

[4] K. Bletsas, M. A. Awan, P. Souto, B. Akesson, A. Burns, and E. Tovar,
“Decoupling Criticality and Importance in Mixed-Criticality Schedul-
ing,” in WMC 2018.

[5]1 S. Holzknecht, E. Biebl, and H.-U. Michel, “Graceful degradation
for driver assistance systems,” Advanced Microsystems for Automotive
Applications 2009, Springer Berlin Heidelberg, pp. 255-265.

[6] V. K. Sundar and A. Easwaran, “A practical degradation model for
mixed-criticality systems,” IEEE ISORC, 2019.

[71 B. Wymann, C. Dimitrakakisy, A. Sumnery, and C. Guionneauz, “Torcs:
The open racing car simulator,” 2015.

[8] “Frdm-kl25z: Freescale freedom development platform - kinetis mcus.”

[9]1 “Hercules tms5701s31x/21x development kit”” [Online]. Available:

http://www.ti.com/tool/TMDS570LS31HDK

https://github.com/VerifiableAutonomy/TORCSLink.

G. S. Cand R. Y, “Dynamic speed adaptation for path tracking based on

curvature information and speed limits,” Sensors (Basel), vol. 17, no. 6,

June 2017.

[10]
(1]

30

On Solving the IoT Development Silo Problem

Michael C. Brogioli, William Games, and Richard Moats
Network Native, Inc
Austin, Texas USA
{michael.brogioli, bill.games, richard.moats } @networknative.com

Abstract— Virtually all modern IoT systems are distributed
and heterogeneous in architecture, comprising cloud computing,
fog or edge computing, and embedded devices with as little as 8-
bit bare metal CPU and limited resources. This paper presents a
new approach to distributed heterogeneous development,
facilitating connected embedded components to be developed and
maintained as an extension of a cloud application. The demo will
show all compute nodes of a modern IoT system being
programmed, integrated and deployed using a unified
development framework and language. The demo will show how
real-world hardware, ranging from robust cloud servers to multi-
core Linux gateways, down to bare-metal 8-bit MCUs can be
incorporated, secured, and deployed in a real world system.

Keywords— IoT, Heterogeneous Computing, Tools, DSL, Arch

I. INTRODUCTION

Modern embedded and IoT (Internet of Things) solutions are
distributed and heterogeneous, with hardware targets
comprising low power 8-bit microcontrollers, lightweight but
powerful network gateways, to the near limitless resources of
internet cloud servers. Modern IoT solutions require expertise
across disparate development platforms, or “silos.” Throughout
this paper, the term silos is used to represent the segmented
development processes and tools required to bring a network
spanning IoT solution to fruition. As development moves from
cloud, to embedded components within a system, increasingly
specialized and costly talent is required and locked within a
given development silo. This is because developing efficient,
secure, reliable embedded software still requires highly-
specialized knowledge.

High-level abstractions that cloud and application
developers take for granted have not found their way to
embedded development. To wit, it is difficult if not impossible
to stay agile while implementing features across multiple teams,
tools, and targets—the logistical challenges slow the pace of
product implementation and innovation. A real-world
embodiment of the problem is a modern drone platform,
comprising cloud servers for data collection, high power
gateways, a robust application processor likely running Linux or
other operating system, and bare metal 8-bit MCUs that may
handle functions such as brushless motor control.

Many industry players have begun to recognize this rapidly
growing problem, such as Intel Corporation, who states, “One
key difference between embedded and IoT is connectivity.
We re transitioning away from isolated devices into a group of
connected devices with awareness of their surroundings.” Intel
continues, “If you think about all the accelerators to do analytics

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

— CPU, graphics, video accelerator, deep learning engine,
FPGA — you're talking about 4-5 different programming
environment.” ““ It’s not the same old tools environment. Tools
must be done in a way that allows developers to move the
workload and acceleration across all these accelerators in the
cloud, gateway, and device as seamlessly as possible [1].” Other
industry juggernauts such as Amazon have taken note of their
development silo problem within their AWS RoboMaker
platform, aiming to tackle the problem of allowing developers
to build and deploy applications via cloud services, while
incorporating over the air updates and demands for a diverse set
of hard to acquire skills [2]. Put succinctly, it is time to
accelerate the development process!

II. THE SOLUTION

Network Native is building a new approach to distributed
heterogeneous development, enabling connected embedded
components to be developed and maintained as a natural
extension of a modern cloud application. Using high-level
abstractions modeled on real embedded product use cases, non-
specialist developers will discover a new level of productivity
and power [4]. The solution proposed is comprised, in part, of
the following:

The Arch Language: A configurable and expandable DSL
(Domain Specific Language) that enables an [oT application to
be abstracted as a network-spanning, integrated whole that can
be componentized for deployment across multiple
heterogeneous computing targets connected by various
communication channels. Arch abstracts away target specific
considerations while offering high level abstractions that
support physical computing applications including message
passing, reactive programming, and hierarchical state
machines. Arch facilitates rapid re-configuration of the
division of labor between nodes or the insertion of a new
hardware tier without modifying the application logic.

-—>- --&

embedded ehull
node

Fig. 1. Example of a Cloud, Fog, and Embedded application.
deployed accordingly without any stage of compute shown.

May be re-

Arch Compilation Infrastructure: The infrastructure makes it
feasible to dynamically separate an application into
components with secure network communications. The

compilation infrastructure incorporates existing vendor tool
chains for cloud, fog and embedded devices, thereby leveraging
decades of hardened technology traditional developers have
come to rely upon.

Arch Framework and Libraries: Frameworks offer efficient,
maintained implementations for common software building
blocks, such as: containerized data structures, math and data
analysis, data storage and streaming, protocol stacks and secure
communications channels, device feature drivers and external
peripheral drivers.

Arch Application Deployment: The deployment system
coordinates the automatic distribution of components to
specified computing node targets. Each computing node has
built-in intra-node communication capability with pre-
fabricated transport security capability.

III. TooLS DEMONSTRATION

The tools demonstration is comprised of the poster, tools
demonstration, and online access to the open source GitHub and
documentation repos of the Network Native code base. While
beyond the scope of this abstract, preliminary videos of the
early-stage Network Native proof-of-concept system from early
3Q17 <can be seen via the content hosted at
www.networknative.com. The current version of the 1Q19
technology will be presented at RTAS 2019 in a deep dive
format.

The tools demonstration will be comprised of three parts:
The system architecture overview shown in Fig 2, the
application development, securitization, build, and iterative
deployment system plus web-based IDE shown in Fig 3, and
distributed heterogeneous application auto partitioning as shown
in Fig 4.

X 10T Domain)
Abstraction | ‘

(ost)

Network [Web-Based Workspace |
o simalate

p
e e | —
EdR process /m
™ Deploy) inte

speiqn Aed € 1ensd

mm‘

(N

Development —

The Interdet
of Things r
= IoT Enableware™

Data Transform, Notification, Storage Services
Web Applcation Service

LAN Hub, Router
or Server

Runtime -

Edge Device
or “Thing”

Enterprise or Public Cloud Server

Fig. 2. The Network Native Eco-system, from application abstration to bare
metal runtime environments.

The system architecture component of the demo will show
how the Arch language is used to write distributed, heterogenous
applications that automatically deploy across cloud, fog and
embedded node targets. It also shows a web-based IDE
demonstrating agile editing, simulation, test, and deployment.

32

§\\I

Software Update

‘é ey Handing
Fig. 3. Arch application, build and deployed with security and updates as well
as transport layer integration.

Tansport

The deployment module of the demonstration will show a
user generated Arch application specification and configuration
being built and deployed across the network of heterogeneous
devices. This will include iterative software updates,
serialization of communication channels, encryption and
transport layer. The network is comprised of one or more cloud,
fog and embedded nodes. The application itself will be
modified, re-compiled and re-deployed in a matter of seconds to
show how the system facilitates agile development work flows.

T -

T =

T
cloud

Fig. 4. An application being systematcially decomposed by the Arch system,
and seriailized and deployed across the network.

The final component of the demonstration will be an
illustration building upon the application examples, showing
how applications are segmented and deployed across the
network of cloud, fog and wireless embedded sensors. While
not a compiler theory based session, practitioner focused
tutorials will be provided focusing on application developers
and providing better understanding of how the Network Native
solution fits into their future IoT application development
requirements.

IV. DELIVERABLES

Network Native will also present information regarding their
upcoming technical release that aims to incorporate support for
new hardware targets, such as RISC-V, as well as various drone
hardware platforms such as Qualcomm Flight.

[1] Schwaderer, Curt, Embedded Computing Design, Driving loT Innovation

Along a Roadmap of Hardware, Software and Tools, April 12,2018.

Amazon, Amazon Web Services Announces AWS RoboMaker,
November 16,2018

Network Native, The Next Wave of Connected Development, February
2018.

Kraeling, Mark B and Brogioli, Michael C, Internet of Things — A
Synopsis, its History, Application, Technology Architecture, and
Challenges Moving Forward, Embedded Systems - Expert Guide Series,
Elsevier Publishing, Atlanta, GA, 2019.

Static Program Placement Platform for Embedded
Multi-Core Multi-Cluster System

Seiya Maeda Yuya Maruyama Takuya Azumi
Graduate School of Science and Graduate School of Engineering Graduate School of Science and
Engineering Science Engineering

Saitama University
Saitama, Japan
smaeda@mail.saitama-u.ac.jp

Abstract— We propose a static program placement platform
for embedded multi-core multi-cluster systems. In recent years,
the development of autonomous driving systems has advanced.
Autonomous driving systems are developed using the Robot
Operating System (ROS), which is suitable for the development
of robotics and used for various systems of autonomous driving
vehicles. Autonomous driving systems consist of multiple small
programs. These small programs exchange messages called
topics between programs. We have created a simple framework
to realize these features for multi-core multi-cluster embedded
system. It is lightweight and it is possible to statically determine
the cluster number and the core number for executing a given
program. This will improve real-time performance during
program execution. This demonstration uses NVIDIA JETSON
TX 2 as an embedded device. The autonomous driving system is
composed of many programs. In this demonstration, the
embedded device side executes self-driving modules such as path
planning and path following.

l. INTRODUCTION

One of the main functionalities of the robot operating
system (ROS) [1] is a message exchange system called
publish/subscribe. In addition, ROS is composed of small
programs called nodes and these programs pass the control of
messages called topics. We tried to operate these functions
with lightweight and energy-saving embedded equipment.
The assumed embedded board is composed of multiple
clusters and has multicore processors on each cluster. We
propose a mechanism to statically place ROS node programs
on these clusters and cores with a specified number. The
programs can run on each core and communicate with each
other. In the autonomous driving system, many ROS programs
already exist. We have made it possible to use these program
source code without changing them. We propose a mechanism
to easily realize the features of ROS on an embedded board.
We call this development workflow ROS-lite, and details are
explained in the next section.

Il. ROS-LITE

ROS-lite is a lightweight implementation compared with
ROS, and it can operate even with embedded systems with
limited resources.

Using ROS-lite, we can run a ROS node application written
in C++ on the target board with multiple clusters. We will
explain the framework of Fig. 1. First, copy the source code
and message file directly from the existing ROS package to
the workspace. Next, proceed according to the ROS-lite
workflow indicated by the red arrow. Finally, the ROS
program is deployed and executed on the target embedded
device. We explain this flow in the order of 1 through 4 shown
in Fig. 1.

Osaka University
Toyonaka, Japan

33

Saitama University
Saitama, Japan

existing { ros-ie | —
ROSPasass | | Vo ommand Line Tools

" 2. Create

Header files

—
1

@

)

v

} msg)

=0

=./

L

Extract C++
code files
as they are

3. Create initialization
codes

pate Map File

-

. Cr|

target embedded
board

4. Build and Execute

Fig. 1. Development flow of the ROS-lite framework.

- name: talker
cluster: 1
core:1
publish: [/chatter]
subscribe: []
- name: listenerl
cluster: 2
core:1
publish: []
subscribe: [/chatter]
- name: listener2
cluster : 2
core:2
publish: []
subscribe: [/chatter]

[chatter

Subscribe

Publish

| Cluster 1 | Cluster 2 |

I corel

corel|

listenerl

Fig.2. The Map file (.map) and the publish/subscribe model.

A. Create Map file

A map file (.map) is generated from the application source
code. The map file contains the node name, assigned cluster
number, assigned core number, and information concerning
the topics that are published and subscribed to. Fig. 2 shows
an example of the map file. In this case, a node called “talker”
runs on cluster 1, corel and “listenerl” and “listener2” run on
cluster 2. In addition it shows that talker publishes a topic
called “/chatter” and listenerl and listener2 subscribe to it.

These descriptions, except for the assigned cluster number
and the core number, can be interpreted from the ROS nodes.
As for the optimal placement of the cluster number and the
core number, we anticipate that, in the future, automatic
deployment will be possible via collaboration with our
partner team who studying the optimal placement of the
parallel processing.

ode
n-1

Node
#n
Abstraction Layer

] f
i 1
Cluster | Cluster 8
i
1 B 2 i
i

Fig.3 System stack for ROS-lite.

Application

.)
Node f§ Node | Node i
f w2 | #3 |

Middleware

Cluster

1
i
e Clister N
'

Peripheral

B. Create header files

The header files that define the message structure are
generated from the message files (.msg), as in the original
ROS. This code-generation module is based on the original
ROS script, and message files (.msg) can be described in the
rule they are in ROS.

C. Create Initialization codes

The initialization code for the startup process of the ROS
node is generated from the map file (.map). The ROS node is
automatically started as a process scheduled by the OS on the
user-assigned cluster. Application developers do not need to
write any code for this step.

D. Build and execute

A build script is generated from the user-defined map file
(-map). The source code of the ROS nodes is built separately
for each user-assigned cluster because the executable files are
loaded into separate memory banks on each cluster. This
process is conducted via the build script.

A simple example to understand the ROS-lite framework is
provided in Fig. 2. One node publishes a /chatter topic, and
two nodes subscribe to that topic. The publisher node is
launched in cluster 1, and two subscriber nodes are launched
in cluster 2, as described by the assigned cluster number in
the map file (.map) shown in Fig. 2.

Application developers can change the node mapping by
modifying the cluster number field and the core number field.
Information concerning topics in the map file (.map) is used
to initialize the relation between the topics and the nodes so
that ROS-lite directs the process of matching the nodes with
the topic names. These fields, for the node name and topic
information, are generated from source codes on the ROS
nodes program, and then initialization scripts for the node
relations in ROS-lite are generated from the map file (.map).

I1l. IMPLEMENTATION

We implemented and tested the ROS-lite platform with
Kalray MPPA-256 [2]. Kalray MPPA 256 has 16 clusters, and
each cluster has 16 core processors. Next, we implemented the
platform on NVIDIA JETSON TX2 [3], which has one cluster
and four cores.

34

Fig.4 Demonstration of Autoware, the embedded device executes pafh
planning and path following.

ROS-lite was developed in POSIX, and an abstraction layer
will be provided between ROS-lite and the OS to eliminate OS
dependency shown in Fig. 3.

There is ROS 2 [4] as a related ROS lightweight version. On
the other hand, ROS-lite aims at a development platform that
improves real-time performance by placing the programs
statically by specifying the cluster and core number.

IV. DEMONSTRATION

We use Autoware [5][6] which is open-source software
including a set of self-driving modules, such as localization,
detection, prediction, planning, and control. typical
autonomous driving system. Using this source code, we will
demonstrate the ROS-lite procedure from copying the source
code to working on the target embedded system. Finally, we
will demonstrate autonomous driving using the simulation
data acquired by actual driving as shown in Fig. 4. Autoware
runs on the PC and connects to ROS-lite on the embedded
system via Ethernet. The operation status is monitored using
Rviz of ROS display tool. In this demonstration, self-driving
modules such as path planning and path following of
Autoware are placed on the embedded system side and
operated.

We released ROS-lite as open-source software [7].

ACKNOWLEDGMENT

This work is based on results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES

ROS. http://www.ros.org.

Y. Maruyama, S. Kato, and T. Azumi, “Exploring Scalable Data
Allocation and Parallel Computing on NoC-based Embedded Many
Cores," In Proc. of ICCD, pp. 225-228, 2017.

NVIDIA. https://www.nvidia.com/en-us/autonomous-machines/.

Y. Maruyama, S. Kato, and T. Azumi, “Exploring the Performance of
ROS2," In Proc. of EMSOFT, 2016.

Autoware.Al. https://www.autoware.ai/.

S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y.
Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi. Autoware
on board: Enabling autonomous vehicles with embedded systems. In
Proc. of ICCPS, pp. 287-296, 2018.

ROS-lite. https://github.com/azu-lab/ros-lite.

(1]
[2]

[3]
[4]

(5]
(6]

(7]

Fractional GPUs: Software-based Compute and
Memory Bandwidth Reservation for GPUs

Saksham Jain*, Iljoo Baek*, Shige Wang’, Ragunathan (Raj) Rajkumar*
*Carnegie Mellon University
fGM Motors R&D
sakshamj@andrew.cmu.edu, ibaeck @andrew.cmu.edu, shige.wang@gm.com, raj@ece.cmu.edu

Abstract—GPUs are increasingly being used in real-time sys-
tems, such as autonomous vehicles, due to the vast performance
benefits that they offer. As more and more applications use GPUs,
more than one application may need to run on the same GPU
in parallel. However, real-time systems also require predictable
performance from each individual applications which GPUs do
not fully support in a multi-tasking environment. Nvidia recently
added a new feature in their latest GPU architecture that allows
limited resource provisioning. This feature is provided in the
form of a closed-source kernel module called the Multi-Process
Service (MPS). However, MPS only provides the capability to
partition the compute resources of GPU and does not provide any
mechanism to avoid inter-application conflicts within the shared
memory hierarchy. In our experiments, we find that compute
resource partitioning alone is not sufficient for performance
isolation. In the worst case, due to interference from co-running
GPU tasks, read/write transactions can observe a slowdown of
more than 10x.

Fractional GPUs (FGPUs) is a software-only mechanism to
partition both compute and memory resources of a GPU to allow
parallel execution of GPU workloads with performance isolation.
As many details of GPU memory hierarchy are not publicly avail-
able, we first reverse-engineer the information through various
micro-benchmarks. We find that the GPU memory hierarchy is
different from that of the CPU, making it well-suited for page
coloring. Based on our findings, we were able to partition both the
L2 cache and DRAM for multiple Nvidia GPUs. Furthermore,
we show that a better strategy exists for partitioning compute
resources than the one used by MPS. An FGPU combines both
this strategy and memory coloring to provide superior isolation.

In the demo, we show that FGPU provides superior perfor-
mance isolation in contrast with MPS or compute-only parti-
tioning by conducting evaluations using various applications on
multiple Nvidia GPUs. We also showcase our reverse-engineering
algorithms and the interesting details revealed by them.

I. INTRODUCTION

GPUs are becoming more powerful with each new genera-
tion and architecture. Also, real-time systems are increasingly
deploying applications that use the GPU. This is driven by
the increase in popularity of machine-learning applications,
especially in domains such as autonomous vehicles, which
exploit the massive parallelism provided by GPUs. A single
application may not be able to use an entire GPU, while
multiple applications can benefit from using the GPU. These
two trends make it important to allow a GPU to run multiple
applications. As real-time applications have strict deadlines,
GPUs simultaneously need to provide predictable application
performance even in worst case scenarios, especially for
safety-critical applications.

To support these demands, Nvidia provides MPS [3]
which allows multiple applications to co-run on GPU. They
recently even added a new QoS feature in MPS that allows
programmers to specify an upper limit on the number of
GPU threads available for each application to limit available
compute bandwidth on a per-application basis. The idea is that
capping the portion of available threads will reduce destructive
interference between applications. However, MPS only allows
partitioning the compute resources of GPU and does not
provide any mechanism to avoid inter-application conflicts
within the memory hierarchy.

Prior works [5] [7] [8] [11] [12] [13] [15] have shown that
two applications, running on different cores on a CPU, can still
affect each other’s runtime due to conflicts in the memory hi-
erarchy. FGPU implements a software-based GPU partitioning
method to split a single GPU into smaller fractional GPUs by
partitioning both compute and memory resources. This allows
multiple applications to run in parallel, each within a different
fractional GPU, with a high degree of isolation.

FGPU partitions memory resources via page coloring. To
achieve this, details of the memory hierarchy of GPU needs
to be known apriori. As this information is not public, we
propose generic algorithms to reverse-engineer the memory
hierarchy of Nvidia GPUs .

II. THE DEMO
A. System Setup

We showcase FPGU’s capabilities across different Nvidia
GPUs (GTX 1070, GTX 1080 and Tesla V100).

B. Evaluation

For showcasing the usefulness of FGPU, we evaluate the
performance isolation between co-running tasks on a single
GPU. We split the GPU into two or four partitions using three
different approaches:

1) Compute-Only Partitioning (similar to technique intro-
duced in [14]) by assigning disjoint sets of GPU “cores”
to different applications.

2) Compute-Only Partitioning using Nvidia’s MPS (avail-
able only on Tesla V100 GPU)

3) Compute and Memory Partitioning using FGPU

'We focus on Nvidia GPUs because they are the leading platforms for
high-performance computing.

35

Name Source / Benchmark Description
MM CUDA SDK [2] Matrix Multiplication
SN CUDA SDK Sorts Array
VA CUDA SDK Vector Addition
SP CUDA SDK Scalar Product
FWT CUDA SDK Fast Walsh Transform
CFD Rodinia [4] Computational Fluid Dynamics

TABLE I: Applications used for Evaluation

On the first partition, we run the application of interest (one
of the applications from Table I) and measure its average run-
time while running interfering applications in parallel on the
other partition/s. We show that the application of interest has
less runtime variance when GPUs are partitioned using FGPU
irrespective of the interfering applications running on the other
partition/s. Notably, with FGPU, the application’s runtime only
increase by 7-9% on average when other tasks are running in
parallel. Whereas without FGPU, the application’s runtime can
increase by up to 130-220% due to the interference from co-
running applications.?

Furthermore, using the evaluation results, we discuss the
trade-offs of FGPU, notably that the page coloring splits the
available memory bandwidth between all the partitions of the
GPU even if some of those partitions might be idle. Also,
implementing compute partitioning via software, instead of
hardware, can introduce performance overhead.

C. Reverse-Engineering of Memory Hierarchy

Prior studies [6] [9] [10] have attempted to dissect the
memory hierarchy of various Nvidia GPUs across different
architectures with limited success. These works were not
successful as they made assumptions about the memory hier-
archy that were valid for CPUs but not for GPUs as GPUs
have substantially different memory hierarchy. We instead
propose generic algorithms that make few assumptions about
the hardware and hence our algorithms work on both CPUs
and GPUs. We demonstrate the capabilities of our algorithms
by showcasing that these algorithms can reverse engineer
the memory hierarchy (L2 cache and DRAM) of Nvidia
GPUs and CPUs (i7-7700) automatically without any manual
intervention.

Our algorithms work by

1) Finding multiple pairs of addresses that lie on the
same L2 cache set/DRAM bank using hardware-agnostic
properties.

2) Finding the mapping function, that maps an address to a
cache set/DRAM bank, using exhaustive and intelligent
brute force search such that this mapping function as-
signs the same cache set/DRAM bank to both addresses
in all the pairs collected.

Our reverse-engineering results shows that the GPU mem-
ory hierarchy is different from a typical CPU memory hier-

2The baseline for the results is tNoPartitioning * IV, where
LNoPartitioning 15 the average time taken by the application while running
on the whole GPU without interference and N is the number of partitions of
the GPU. This baseline assumes ideal partitioning e.g. splitting the GPU into
two partitions should increase the runtime by a factor of 2.

36

archy and is more complex in order to achieve high memory
bandwidth.

III. CONCLUSION

In conclusion, we demonstrate how Fractional GPUs can
allow system designers to run multiple applications together
on the same GPU while avoiding interference between them.
We also showcase how our generic algorithms allow for
automatic reverse-engineering of the memory hierarchy of
both GPUs and CPUs and reveal interesting details about the
structure of L2 cache and DRAM of the GPUs. More details
about Fractional GPUs can be found in our full-length paper
[1] which has passed the RTAS Artifact Evaluation process
successfully.

REFERENCES
[1

http://www.andrew.cmu.edu/user/sakshamj/papers/EFGPU_RTAS _

2019_Fractional_GPUs_Software_based_Compute_and_Memory_

Bandwidth_Reservation_for_GPUs.pdf.

[2] NVIDIA CUDA Toolkit. http://www.nvidia.com/object/

embedded- systems-dev-kits-modules.html.

NVIDIA MPS. https://docs.nvidia.com/deploy/pdf/CUDA_Multi_

Process_Service_Overview.pdf.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 44-54. leee, 2009.

[5] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and
J. Lee. Response time analysis of cots-based multicores considering
the contention on the shared memory bus. In 8th IEEE International
Conference on Embedded Software and Systems, pages 1068-1075.
IEEE, 2011.

[6] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting
the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv
preprint arXiv:1804.06826, 2018.

[7]1 L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, pages 367-376.
ACM, 2012.

[8] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th, pages 45-54. IEEE, 2013.

[9] X. Mei and X. Chu. Dissecting GPU memory hierarchy through

microbenchmarking. IEEE Transactions on Parallel and Distributed

Systems, 28(1):72-86, 2017.

R. Meltzer, C. Zeng, and C. Cecka. Micro-benchmarking the C2070. In

GPU Technology Conference. Citeseer, 2013.

R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.

Worst case delay analysis for memory interference in multicore systems.

In Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2010, pages 741-746. 1EEE, 2010.

N. Suzuki, H. Kim, D. De Niz, B. Andersson, L. Wrage, M. Klein, and

R. Rajkumar. Coordinated bank and cache coloring for temporal protec-

tion of memory accesses. In Computational Science and Engineering

(CSE), 2013 IEEE 16th International Conference on, pages 685-692.

IEEE, 2013.

P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches

to improve isolation in multicore real-time systems. In Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2016 IEEE,

pages 1-12. IEEE, 2016.

B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter. Enabling and

exploiting flexible task assignment on GPU through SM-centric program

transformations. In Proceedings of the 29th ACM on International

Conference on Supercomputing, pages 119—-130. ACM, 2015.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access

control in multiprocessor for real-time systems with mixed criticality. In

Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on, pages

299-308. IEEE, 2012.

[3

[t}

[10]
(1]

[12]

[13]

[14]

[15]

	Message from the Chair
	Table of Contents
	Paper
	Experience Report: Lightweight Implementation of a Controller Area Network to Ethernet Gateway
	Time-Aware Deep Intelligence on Batteryless Platforms
	SpotON: Just-in-Time Active Event Detection on Energy Autonomous Sensing Systems
	A Unified Runtime Framework for Weakly-hard Real-time Systems
	Memory Mapping Analysis for Automotive Systems
	QRONOS: Towards Quality-Aware Responsive Real-Time Control Systems
	AUTOSAR Runnable Scheduling for Automobile Control Application's Optimal Performance
	Demo Abstract: Testbed for Practical Considerations in Mixed-Criticality System Design
	On Solving the IoT Development Silo Problem
	Static Program Placement Platform for Embedded Multi-Core Multi-Cluster Systems
	Fractional GPUs: Software-based Compute and Memory Bandwidth Reservation for GPUs

